The demand for next-generation multifunctional nanovectors, combining therapeutic effects with specific cellular targeting, has significantly grown during the last few years, pursuing less invasive therapy strategies. Polyphenol-conjugated silver nanoparticles (AgNPs) appear as potential multifunctional nanovectors, integrating the biorecognition capability and the antioxidant power of polyphenols, the antimicrobial activity of silver, and the drug delivery capability of NPs. We present a spectroscopic and microscopic investigation on polyphenol-synthesized AgNPs, selecting caffeic acid (CA) and catechol (CT) as model polyphenols and using them as reducing agents for the AgNP green synthesis, both in the presence and in the absence of a capping agent. We exploit the plasmonic properties of AgNPs to collect Surface-Enhanced Raman Scattering (SERS) spectra from the nanosized region next to the Ag surface and to characterize the molecular environment in the proximity of the NP, assessing the orientation and tunable deprotonation level of CA, depending on the synthesis conditions. Our results suggest that the SERS investigation of such nanovectors can provide crucial information for their perspective biomedical application.

Nanoscale surface-enhanced Raman spectroscopy investigation of a Polyphenol-based plasmonic nanovector / Nisini, Giacomo; Scroccarello, Annalisa; Ripanti, Francesca; Fasolato, Claudia; Cappelluti, Francesco; Capocefalo, Angela; Della Pelle, Flavio; Compagnone, Dario; Postorino, Paolo. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:3(2023), pp. 1-16. [10.3390/nano13030377]

Nanoscale surface-enhanced Raman spectroscopy investigation of a Polyphenol-based plasmonic nanovector

Giacomo Nisini
Primo
Membro del Collaboration Group
;
Francesca Ripanti
Membro del Collaboration Group
;
Claudia Fasolato
Membro del Collaboration Group
;
Francesco Cappelluti
Membro del Collaboration Group
;
Angela Capocefalo
Membro del Collaboration Group
;
Dario Compagnone
Membro del Collaboration Group
;
Paolo Postorino
Membro del Collaboration Group
2023

Abstract

The demand for next-generation multifunctional nanovectors, combining therapeutic effects with specific cellular targeting, has significantly grown during the last few years, pursuing less invasive therapy strategies. Polyphenol-conjugated silver nanoparticles (AgNPs) appear as potential multifunctional nanovectors, integrating the biorecognition capability and the antioxidant power of polyphenols, the antimicrobial activity of silver, and the drug delivery capability of NPs. We present a spectroscopic and microscopic investigation on polyphenol-synthesized AgNPs, selecting caffeic acid (CA) and catechol (CT) as model polyphenols and using them as reducing agents for the AgNP green synthesis, both in the presence and in the absence of a capping agent. We exploit the plasmonic properties of AgNPs to collect Surface-Enhanced Raman Scattering (SERS) spectra from the nanosized region next to the Ag surface and to characterize the molecular environment in the proximity of the NP, assessing the orientation and tunable deprotonation level of CA, depending on the synthesis conditions. Our results suggest that the SERS investigation of such nanovectors can provide crucial information for their perspective biomedical application.
2023
Raman; SERS; nanovectors biomedical applications
01 Pubblicazione su rivista::01a Articolo in rivista
Nanoscale surface-enhanced Raman spectroscopy investigation of a Polyphenol-based plasmonic nanovector / Nisini, Giacomo; Scroccarello, Annalisa; Ripanti, Francesca; Fasolato, Claudia; Cappelluti, Francesco; Capocefalo, Angela; Della Pelle, Flavio; Compagnone, Dario; Postorino, Paolo. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:3(2023), pp. 1-16. [10.3390/nano13030377]
File allegati a questo prodotto
File Dimensione Formato  
Nisini_Nanoscale-surface-enhanced_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1683649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact