Every day, railways experience disturbances and disruptions, both on the network and the fleet side, that affect the stability of rail traffic. Induced delays propagate through the network, which leads to a mismatch in demand and offer for goods and passengers, and, in turn, to a loss in service quality. In these cases, it is the duty of human traffic controllers, the so-called dispatchers, to do their best to minimize the impact on traffic. However, dispatchers inevitably have a limited depth of perception of the knock-on effect of their decisions, particularly how they affect areas of the network that are outside their direct control. In recent years, much work in Decision Science has been devoted to developing methods to solve the problem automatically and support the dispatchers in this challenging task. This paper investigates Machine Learning-based methods for tackling this problem, proposing two different Deep Q-Learning methods(Decentralized and Centralized). Numerical results show the superiority of these techniques respect to the classical linear Q-Learning based on matrices. Moreover the Centralized approach is compared with a MILP formulation showing interesting results. The experiments are inspired on data provided by a U.S. class 1 railroad.
Solving the train dispatching problem via deep reinforcement learning / Agasucci, Valerio; Grani, Giorgio; Lamorgese, Leonardo. - In: JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT. - ISSN 2210-9706. - (2023), pp. 1-16. [10.1016/j.jrtpm.2023.100394]
Solving the train dispatching problem via deep reinforcement learning
Valerio Agasucci;Giorgio Grani;
2023
Abstract
Every day, railways experience disturbances and disruptions, both on the network and the fleet side, that affect the stability of rail traffic. Induced delays propagate through the network, which leads to a mismatch in demand and offer for goods and passengers, and, in turn, to a loss in service quality. In these cases, it is the duty of human traffic controllers, the so-called dispatchers, to do their best to minimize the impact on traffic. However, dispatchers inevitably have a limited depth of perception of the knock-on effect of their decisions, particularly how they affect areas of the network that are outside their direct control. In recent years, much work in Decision Science has been devoted to developing methods to solve the problem automatically and support the dispatchers in this challenging task. This paper investigates Machine Learning-based methods for tackling this problem, proposing two different Deep Q-Learning methods(Decentralized and Centralized). Numerical results show the superiority of these techniques respect to the classical linear Q-Learning based on matrices. Moreover the Centralized approach is compared with a MILP formulation showing interesting results. The experiments are inspired on data provided by a U.S. class 1 railroad.File | Dimensione | Formato | |
---|---|---|---|
Agasucci_Solving-the-train_2023.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
407.79 kB
Formato
Adobe PDF
|
407.79 kB | Adobe PDF | |
Agasucci_Solving-the-train_2023.pdf.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
733.98 kB
Formato
Adobe PDF
|
733.98 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.