The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.
From waste to taste. Application of fermented spent rootlet ingredients in a bread system / Neylon, Emma; Nyhan, Laura; Zannini, Emanuele; Sahin, Aylin W; Arendt, Elke K. - In: FOODS. - ISSN 2304-8158. - 12:7(2023), pp. 1-25. [10.3390/foods12071549]
From waste to taste. Application of fermented spent rootlet ingredients in a bread system
Zannini, Emanuele;
2023
Abstract
The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.File | Dimensione | Formato | |
---|---|---|---|
Neylon_From-waste_2023.pdf
accesso aperto
Note: Articolo rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.