Medullary thyroid carcinoma (MTC) is a malignant tumor with challenging management. Multi-targeted kinase inhibitors (MKI) and tyrosine-kinase inhibitors (TKI) with high specificity for RET protein are approved for advanced MTC treatment. However, their efficacy is hindered by evasion mechanisms of tumor cells. Thus, the aim of this study was the identification of an escape mechanism in MTC cells exposed to a highly selective RET TKI. TT cells were treated with TKI, MKI, and/or the HH-Gli inhibitors, GANT61 and Arsenic Trioxide (ATO), in the presence or absence of hypoxia. RET modifications, oncogenic signaling activation, proliferation and apoptosis were assessed. Additionally, cell modifications and HH-Gli activation were also evaluated in pralsetinib-resistant TT cells. Pralsetinib inhibited RET autophosphorylation and RET downstream pathways activation in normoxic and hypoxic conditions. Additionally, pralsetinib impaired proliferation, induced the activation of apoptosis and, in hypoxic cells, downregulated HIF-1α. Focusing on escape molecular mechanisms associated with therapy, we observed increased Gli1 levels in a subset of cells. Indeed, pralsetinib stimulated the re-localization of Gli1 into the cell nuclei. Treatment of TT cells with both pralsetinib and ATO resulted in Gli1 down-regulation and impaired cell viability. Moreover, pralsetinib-resistant cells confirmed Gli1 activation and up-regulation of its transcriptionally regulated target genes. Altogether, we showed that pralsetinib impairs MTC cell growth and induces cell death, also in hypoxic conditions. The HH-Gli pathway is a new molecular mech- anism of escape to pralsetinib therapy that can be overcome through combined therapy.

Molecular mechanisms of the tyrosine kinase inhibitor pralsetinib activity in in-vitro models of medullary thyroid carcinoma: Aberrant activation of the HH-Gli signaling pathway in acquired resistance / Trocchianesi, Sofia; Po, Agnese; Citarella, Anna; Spinello, Zaira; Rughetti, Aurelia; Besharat, Zein Mersini; Autilio, Tanja Milena; Pecce, Valeria; Verrienti, Antonella; Elisei, Rossella; Durante, Cosimo; Catanzaro, Giuseppina; Ferretti, Elisabetta. - In: BIOMÉDECINE & PHARMACOTHÉRAPIE. - ISSN 0753-3322. - 164:(2023), p. 114995. [10.1016/j.biopha.2023.114995]

Molecular mechanisms of the tyrosine kinase inhibitor pralsetinib activity in in-vitro models of medullary thyroid carcinoma: Aberrant activation of the HH-Gli signaling pathway in acquired resistance

Trocchianesi, Sofia;Po, Agnese;Citarella, Anna;Spinello, Zaira;Rughetti, Aurelia;Besharat, Zein Mersini;Autilio, Tanja Milena;Pecce, Valeria;Verrienti, Antonella;Durante, Cosimo;Catanzaro, Giuseppina;Ferretti, Elisabetta
2023

Abstract

Medullary thyroid carcinoma (MTC) is a malignant tumor with challenging management. Multi-targeted kinase inhibitors (MKI) and tyrosine-kinase inhibitors (TKI) with high specificity for RET protein are approved for advanced MTC treatment. However, their efficacy is hindered by evasion mechanisms of tumor cells. Thus, the aim of this study was the identification of an escape mechanism in MTC cells exposed to a highly selective RET TKI. TT cells were treated with TKI, MKI, and/or the HH-Gli inhibitors, GANT61 and Arsenic Trioxide (ATO), in the presence or absence of hypoxia. RET modifications, oncogenic signaling activation, proliferation and apoptosis were assessed. Additionally, cell modifications and HH-Gli activation were also evaluated in pralsetinib-resistant TT cells. Pralsetinib inhibited RET autophosphorylation and RET downstream pathways activation in normoxic and hypoxic conditions. Additionally, pralsetinib impaired proliferation, induced the activation of apoptosis and, in hypoxic cells, downregulated HIF-1α. Focusing on escape molecular mechanisms associated with therapy, we observed increased Gli1 levels in a subset of cells. Indeed, pralsetinib stimulated the re-localization of Gli1 into the cell nuclei. Treatment of TT cells with both pralsetinib and ATO resulted in Gli1 down-regulation and impaired cell viability. Moreover, pralsetinib-resistant cells confirmed Gli1 activation and up-regulation of its transcriptionally regulated target genes. Altogether, we showed that pralsetinib impairs MTC cell growth and induces cell death, also in hypoxic conditions. The HH-Gli pathway is a new molecular mech- anism of escape to pralsetinib therapy that can be overcome through combined therapy.
2023
Medullary thyroid carcinoma; Pralsetinib; HH-Gli signaling; Resistance to therapy; Normoxia; Hypoxia
01 Pubblicazione su rivista::01a Articolo in rivista
Molecular mechanisms of the tyrosine kinase inhibitor pralsetinib activity in in-vitro models of medullary thyroid carcinoma: Aberrant activation of the HH-Gli signaling pathway in acquired resistance / Trocchianesi, Sofia; Po, Agnese; Citarella, Anna; Spinello, Zaira; Rughetti, Aurelia; Besharat, Zein Mersini; Autilio, Tanja Milena; Pecce, Valeria; Verrienti, Antonella; Elisei, Rossella; Durante, Cosimo; Catanzaro, Giuseppina; Ferretti, Elisabetta. - In: BIOMÉDECINE & PHARMACOTHÉRAPIE. - ISSN 0753-3322. - 164:(2023), p. 114995. [10.1016/j.biopha.2023.114995]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact