The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.

Linking the genomic signatures of human beat synchronization and learned song in birds / Gordon, R. L.; Ravignani, A.; Hyland Bruno, J.; Robinson, C. M.; Scartozzi, A.; Embalabala, R.; Niarchou, M.; Cox, N. J.; Creanza, N.. - In: PHILOSOPHICAL TRANSACTIONS - ROYAL SOCIETY. BIOLOGICAL SCIENCES. - ISSN 0962-8436. - 376:1835(2021). [10.1098/rstb.2020.0329]

Linking the genomic signatures of human beat synchronization and learned song in birds

Ravignani A.;
2021

Abstract

The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
2021
beat synchronization; brain; genome; rhythm; songbird; vocal learning
01 Pubblicazione su rivista::01a Articolo in rivista
Linking the genomic signatures of human beat synchronization and learned song in birds / Gordon, R. L.; Ravignani, A.; Hyland Bruno, J.; Robinson, C. M.; Scartozzi, A.; Embalabala, R.; Niarchou, M.; Cox, N. J.; Creanza, N.. - In: PHILOSOPHICAL TRANSACTIONS - ROYAL SOCIETY. BIOLOGICAL SCIENCES. - ISSN 0962-8436. - 376:1835(2021). [10.1098/rstb.2020.0329]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact