Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Catalogo dei prodotti della ricerca
We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec-2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec-2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M (resp. 109.6 M) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models / Bretonniere, H.; Huertas-Company, M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.; Castellano, M.; Brinchmann, J.; Conselice, C. J.; Dole, H.; Cabanac, R.; Courtois, H. M.; Castander, F. J.; Duc, P. A.; Fosalba, P.; Guinet, D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere, A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kummel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespi, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Baldi, M.; Bardelli, S.; Camera, S.; Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolinez, A.; Biviano, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; De La Torre, S.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Gozaliasl, G.; Hook, I. M.; Joachimi, B.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Maoli, R.; Martinelli, M.; Martinet, N.; Mccracken, H. J.; Metcalf, R. B.; Morgante, G.; Morisset, N.; Nightingale, J.; Nucita, A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Sanchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tutusaus, I.; Valiviita, J.; Viel, M.; Whittaker, L.; Knapen, J. H.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 657:(2022). [10.1051/0004-6361/202141393]
Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models
Bretonniere H.;Huertas-Company M.;Boucaud A.;Lanusse F.;Jullo E.;Merlin E.;Tuccillo D.;Castellano M.;Brinchmann J.;Conselice C. J.;Dole H.;Cabanac R.;Courtois H. M.;Castander F. J.;Duc P. A.;Fosalba P.;Guinet D.;Kruk S.;Kuchner U.;Serrano S.;Soubrie E.;Tramacere A.;Wang L.;Amara A.;Auricchio N.;Bender R.;Bodendorf C.;Bonino D.;Branchini E.;Brau-Nogue S.;Brescia M.;Capobianco V.;Carbone C.;Carretero J.;Cavuoti S.;Cimatti A.;Cledassou R.;Congedo G.;Conversi L.;Copin Y.;Corcione L.;Costille A.;Cropper M.;Da Silva A.;Degaudenzi H.;Douspis M.;Dubath F.;Duncan C. A. J.;Dupac X.;Dusini S.;Farrens S.;Ferriol S.;Frailis M.;Franceschi E.;Fumana M.;Garilli B.;Gillard W.;Gillis B.;Giocoli C.;Grazian A.;Grupp F.;Haugan S. V. H.;Holmes W.;Hormuth F.;Hudelot P.;Jahnke K.;Kermiche S.;Kiessling A.;Kilbinger M.;Kitching T.;Kohley R.;Kummel M.;Kunz M.;Kurki-Suonio H.;Ligori S.;Lilje P. B.;Lloro I.;Maiorano E.;Mansutti O.;Marggraf O.;Markovic K.;Marulli F.;Massey R.;Maurogordato S.;Melchior M.;Meneghetti M.;Meylan G.;Moresco M.;Morin B.;Moscardini L.;Munari E.;Nakajima R.;Niemi S. M.;Padilla C.;Paltani S.;Pasian F.;Pedersen K.;Pettorino V.;Pires S.;Poncet M.;Popa L.;Pozzetti L.;Raison F.;Rebolo R.;Rhodes J.;Roncarelli M.;Rossetti E.;Saglia R.;Schneider P.;Secroun A.;Seidel G.;Sirignano C.;Sirri G.;Stanco L.;Starck J. -L.;Tallada-Crespi P.;Taylor A. N.;Tereno I.;Toledo-Moreo R.;Torradeflot F.;Valentijn E. A.;Valenziano L.;Wang Y.;Welikala N.;Weller J.;Zamorani G.;Zoubian J.;Baldi M.;Bardelli S.;Camera S.;Farinelli R.;Medinaceli E.;Mei S.;Polenta G.;Romelli E.;Tenti M.;Vassallo T.;Zacchei A.;Zucca E.;Baccigalupi C.;Balaguera-Antolinez A.;Biviano A.;Borgani S.;Bozzo E.;Burigana C.;Cappi A.;Carvalho C. S.;Casas S.;Castignani G.;Colodro-Conde C.;Coupon J.;De La Torre S.;Fabricius M.;Farina M.;Ferreira P. G.;Flose-Reimberg P.;Fotopoulou S.;Galeotta S.;Ganga K.;Garcia-Bellido J.;Gaztanaga E.;Gozaliasl G.;Hook I. M.;Joachimi B.;Kansal V.;Kashlinsky A.;Keihanen E.;Kirkpatrick C. C.;Lindholm V.;Mainetti G.;Maino D.;Maoli R.;Martinelli M.;Martinet N.;McCracken H. J.;Metcalf R. B.;Morgante G.;Morisset N.;Nightingale J.;Nucita A.;Patrizii L.;Potter D.;Renzi A.;Riccio G.;Sanchez A. G.;Sapone D.;Schirmer M.;Schultheis M.;Scottez V.;Sefusatti E.;Teyssier R.;Tutusaus I.;Valiviita J.;Viel M.;Whittaker L.;Knapen J. H.
2022
Abstract
We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec-2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec-2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M (resp. 109.6 M) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
01 Pubblicazione su rivista::01a Articolo in rivista
Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models / Bretonniere, H.; Huertas-Company, M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.; Castellano, M.; Brinchmann, J.; Conselice, C. J.; Dole, H.; Cabanac, R.; Courtois, H. M.; Castander, F. J.; Duc, P. A.; Fosalba, P.; Guinet, D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere, A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kummel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespi, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Baldi, M.; Bardelli, S.; Camera, S.; Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolinez, A.; Biviano, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; De La Torre, S.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Gozaliasl, G.; Hook, I. M.; Joachimi, B.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Maoli, R.; Martinelli, M.; Martinet, N.; Mccracken, H. J.; Metcalf, R. B.; Morgante, G.; Morisset, N.; Nightingale, J.; Nucita, A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Sanchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tutusaus, I.; Valiviita, J.; Viel, M.; Whittaker, L.; Knapen, J. H.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 657:(2022). [10.1051/0004-6361/202141393]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682435
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
12
9
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.