Space biomedicine has provided significant technological breakthroughs by developing new medical devices, diagnostic tools, and health-supporting systems. Many of these products are currently in use onboard the International Space Station and have been successfully translated into clinical practice on Earth. However, biomedical research performed in space has disclosed exciting, new perspectives regarding the relationships between physics and medicine, thus fostering the rethinking of the theoretical basis of biology. In particular, these studies have stressed the critical role that biophysical forces play in shaping the function and pattern formation of living structures. The experimental models investigated under microgravity conditions allow us to appreciate the complexity of living organisms through a very different perspective. Indeed, biological entities should be conceived as a unique magnification of physical laws driven by local energy and order states overlaid by selection history and constraints, in which the source of the inheritance, variation, and process of selection has expanded from the classical Darwinian definition. The very specific nature of the field in which living organisms behave and evolve in a space environment can be exploited to decipher the underlying, basic processes and mechanisms that are not apparent on Earth. In turn, these findings can provide novel opportunities for testing pharmacological countermeasures that can be instrumental for managing a wide array of health problems and diseases on Earth.

Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology / Bizzarri, Mariano; Fedeli, Valeria; Piombarolo, Aurora; Angeloni, Antonio. - In: BIOMEDICINES. - ISSN 2227-9059. - 10:10(2022), p. 2633. [10.3390/biomedicines10102633]

Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology

Bizzarri, Mariano
;
Piombarolo, Aurora;Angeloni, Antonio
2022

Abstract

Space biomedicine has provided significant technological breakthroughs by developing new medical devices, diagnostic tools, and health-supporting systems. Many of these products are currently in use onboard the International Space Station and have been successfully translated into clinical practice on Earth. However, biomedical research performed in space has disclosed exciting, new perspectives regarding the relationships between physics and medicine, thus fostering the rethinking of the theoretical basis of biology. In particular, these studies have stressed the critical role that biophysical forces play in shaping the function and pattern formation of living structures. The experimental models investigated under microgravity conditions allow us to appreciate the complexity of living organisms through a very different perspective. Indeed, biological entities should be conceived as a unique magnification of physical laws driven by local energy and order states overlaid by selection history and constraints, in which the source of the inheritance, variation, and process of selection has expanded from the classical Darwinian definition. The very specific nature of the field in which living organisms behave and evolve in a space environment can be exploited to decipher the underlying, basic processes and mechanisms that are not apparent on Earth. In turn, these findings can provide novel opportunities for testing pharmacological countermeasures that can be instrumental for managing a wide array of health problems and diseases on Earth.
2022
microenvironment; microgravity; non-equilibrium thermodynamics; space biomedicine; systems biology
01 Pubblicazione su rivista::01a Articolo in rivista
Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology / Bizzarri, Mariano; Fedeli, Valeria; Piombarolo, Aurora; Angeloni, Antonio. - In: BIOMEDICINES. - ISSN 2227-9059. - 10:10(2022), p. 2633. [10.3390/biomedicines10102633]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682043
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact