We prove existence, uniqueness and regularity results for mixed boundary value problems associated with fully nonlinear, possibly singular or degenerate elliptic equations. Our main result is a global Holder estimate for solutions, obtained by means of the comparison principle and the construction of ad hoc barriers. The global Holder estimate immediately yields a compactness result in the space of solutions, which could be applied in the study of principal eigenvalues and principal eigenfunctions of mixed boundary value problems. (c) 2022 Elsevier Ltd. All rights reserved.

Mixed boundary value problems for fully nonlinear degenerate or singular equations / Birindelli, I.; Demengel, F.; Leoni, F.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 223:(2022). [10.1016/j.na.2022.113006]

Mixed boundary value problems for fully nonlinear degenerate or singular equations

Birindelli I.;Demengel F.;Leoni F.
2022

Abstract

We prove existence, uniqueness and regularity results for mixed boundary value problems associated with fully nonlinear, possibly singular or degenerate elliptic equations. Our main result is a global Holder estimate for solutions, obtained by means of the comparison principle and the construction of ad hoc barriers. The global Holder estimate immediately yields a compactness result in the space of solutions, which could be applied in the study of principal eigenvalues and principal eigenfunctions of mixed boundary value problems. (c) 2022 Elsevier Ltd. All rights reserved.
2022
Mixed boundary conditions; fully nonlinear singular or degenerate elliptic equations; global holder estimates
01 Pubblicazione su rivista::01a Articolo in rivista
Mixed boundary value problems for fully nonlinear degenerate or singular equations / Birindelli, I.; Demengel, F.; Leoni, F.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 223:(2022). [10.1016/j.na.2022.113006]
File allegati a questo prodotto
File Dimensione Formato  
Birindelli_Mixed_2022.pdf

solo gestori archivio

Note: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 774.91 kB
Formato Adobe PDF
774.91 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1681654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact