The Kerr geometry admits the Carter symmetry, which ensures that the geodesic equations are integrable. It is shown that gravitational waveforms associated with extreme-mass-ratio inspirals involving a nonintegrable compact object display "glitch" phenomena, where the frequencies of gravitational waves increase abruptly, when the orbit crosses certain spacetime regions known as Birkhoff islands. The presence or absence of these features in data from upcoming space-borne detectors will therefore allow not only for tests of general relativity but also of fundamental spacetime symmetries.

Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals / Destounis, Kyriakos; Suvorov, Arthur G.; Kokkotas, Kostas D.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 126:14(2021), p. 141102. [10.1103/PhysRevLett.126.141102]

Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals

Kyriakos Destounis
Primo
;
Arthur G. Suvorov;
2021

Abstract

The Kerr geometry admits the Carter symmetry, which ensures that the geodesic equations are integrable. It is shown that gravitational waveforms associated with extreme-mass-ratio inspirals involving a nonintegrable compact object display "glitch" phenomena, where the frequencies of gravitational waves increase abruptly, when the orbit crosses certain spacetime regions known as Birkhoff islands. The presence or absence of these features in data from upcoming space-borne detectors will therefore allow not only for tests of general relativity but also of fundamental spacetime symmetries.
2021
General Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HE; Nonlinear Sciences - Chaotic Dynamics
01 Pubblicazione su rivista::01f Lettera, Nota
Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals / Destounis, Kyriakos; Suvorov, Arthur G.; Kokkotas, Kostas D.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 126:14(2021), p. 141102. [10.1103/PhysRevLett.126.141102]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1680656
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 43
social impact