In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type. Under the same condition strong convergence of the iterates is provided as well as their linear convergence rate.

Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization / Traoré, Cheik; Salzo, Saverio; Villa, Silvia. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 1573-2894. - 86:1(2023), pp. 303-344. [10.1007/s10589-023-00489-w]

Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization

Saverio Salzo;
2023

Abstract

In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type. Under the same condition strong convergence of the iterates is provided as well as their linear convergence rate.
2023
parallel optimization; rate of convergence; forward-backward algorithm
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization / Traoré, Cheik; Salzo, Saverio; Villa, Silvia. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 1573-2894. - 86:1(2023), pp. 303-344. [10.1007/s10589-023-00489-w]
File allegati a questo prodotto
File Dimensione Formato  
Traoré_Convergence_2023.pdf

accesso aperto

Note: DOI https://doi.org/10.1007/s10589-023-00489-w
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1680429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact