In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type. Under the same condition strong convergence of the iterates is provided as well as their linear convergence rate.
Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization / Traoré, Cheik; Salzo, Saverio; Villa, Silvia. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 1573-2894. - 86:1(2023), pp. 303-344. [10.1007/s10589-023-00489-w]
Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization
Saverio Salzo;
2023
Abstract
In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type. Under the same condition strong convergence of the iterates is provided as well as their linear convergence rate.File | Dimensione | Formato | |
---|---|---|---|
Traoré_Convergence_2023.pdf
accesso aperto
Note: DOI https://doi.org/10.1007/s10589-023-00489-w
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.