Given an asymptotically hyperbolic manifold with minimal conformal infinity, we construct blowing-up solutions for linear perturbations of the fractional Yamabe problem on the conformal infinity provided that either the trace-free part of the second fundamental form or the covariant normal derivative of the normal component of the Ricci tensor on the conformal infinity is non-trivial.

Linear perturbations of the fractional Yamabe problem on the minimal conformal infinity / Deng, S.; Kim, S.; Pistoia, A.. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 29:2(2021), pp. 363-407. [10.4310/CAG.2021.v29.n2.a4]

Linear perturbations of the fractional Yamabe problem on the minimal conformal infinity

Pistoia A.
2021

Abstract

Given an asymptotically hyperbolic manifold with minimal conformal infinity, we construct blowing-up solutions for linear perturbations of the fractional Yamabe problem on the conformal infinity provided that either the trace-free part of the second fundamental form or the covariant normal derivative of the normal component of the Ricci tensor on the conformal infinity is non-trivial.
2021
blowing up solutions, fractional problems
01 Pubblicazione su rivista::01a Articolo in rivista
Linear perturbations of the fractional Yamabe problem on the minimal conformal infinity / Deng, S.; Kim, S.; Pistoia, A.. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 29:2(2021), pp. 363-407. [10.4310/CAG.2021.v29.n2.a4]
File allegati a questo prodotto
File Dimensione Formato  
Deng_Linear_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 449 kB
Formato Adobe PDF
449 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1680263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact