The Hebbian unlearning algorithm, i.e., an unsupervised local procedure used to improve the retrieval properties in Hopfield-like neural networks, is numerically compared to a supervised algorithm to train a linear symmetric perceptron. We analyze the stability of the stored memories: basins of attraction obtained by the Hebbian unlearning technique are found to be comparable in size to those obtained in the symmetric perceptron, while the two algorithms are found to converge in the same region of Gardner's space of interactions, having followed similar learning paths. A geometric interpretation of Hebbian unlearning is proposed to explain its optimal performances. Because the Hopfield model is also a prototypical model of the disordered magnetic system, it might be possible to translate our results to other models of interest for memory storage in materials.

Supervised perceptron learning vs unsupervised Hebbian unlearning: Approaching optimal memory retrieval in Hopfield-like networks / Benedetti, Marco; Ventura, Enrico; Marinari, Enzo; Ruocco, Giancarlo; Zamponi, Francesco. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 156:10(2022), p. 104107. [10.1063/5.0084219]

Supervised perceptron learning vs unsupervised Hebbian unlearning: Approaching optimal memory retrieval in Hopfield-like networks

Benedetti, Marco;Ventura, Enrico;Marinari, Enzo;Ruocco, Giancarlo;Zamponi, Francesco
2022

Abstract

The Hebbian unlearning algorithm, i.e., an unsupervised local procedure used to improve the retrieval properties in Hopfield-like neural networks, is numerically compared to a supervised algorithm to train a linear symmetric perceptron. We analyze the stability of the stored memories: basins of attraction obtained by the Hebbian unlearning technique are found to be comparable in size to those obtained in the symmetric perceptron, while the two algorithms are found to converge in the same region of Gardner's space of interactions, having followed similar learning paths. A geometric interpretation of Hebbian unlearning is proposed to explain its optimal performances. Because the Hopfield model is also a prototypical model of the disordered magnetic system, it might be possible to translate our results to other models of interest for memory storage in materials.
2022
Statistical Mechanics, Disordered Systems, Neural Networks
01 Pubblicazione su rivista::01a Articolo in rivista
Supervised perceptron learning vs unsupervised Hebbian unlearning: Approaching optimal memory retrieval in Hopfield-like networks / Benedetti, Marco; Ventura, Enrico; Marinari, Enzo; Ruocco, Giancarlo; Zamponi, Francesco. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 156:10(2022), p. 104107. [10.1063/5.0084219]
File allegati a questo prodotto
File Dimensione Formato  
Benedetti_Supervised perceptron learning_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.25 MB
Formato Adobe PDF
5.25 MB Adobe PDF   Contatta l'autore
Benedetti_supervised_vs_unsupervised_2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 873.02 kB
Formato Adobe PDF
873.02 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1680161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact