BackgroundPathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. MethodsOmental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). ResultsThe performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. ConclusionsCT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.

Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma / Rundo, L.; Beer, L.; Escudero Sanchez, L.; Crispin-Ortuzar, M.; Reinius, M.; Mccague, C.; Sahin, H.; Bura, V.; Pintican, R.; Zerunian, M.; Ursprung, S.; Allajbeu, I.; Addley, H.; Martin-Gonzalez, P.; Buddenkotte, T.; Singh, N.; Sahdev, A.; Funingana, I. -G.; Jimenez-Linan, M.; Markowetz, F.; Brenton, J. D.; Sala, E.; Woitek, R.. - In: FRONTIERS IN ONCOLOGY. - ISSN 2234-943X. - 12:(2022), pp. 1-12. [10.3389/fonc.2022.868265]

Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma

Zerunian M.
Data Curation
;
2022

Abstract

BackgroundPathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. MethodsOmental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). ResultsThe performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. ConclusionsCT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.
2022
chemotherapy response score; computed tomography; neoadjuvant chemotherapy; ovarian cancer; radiomics
01 Pubblicazione su rivista::01a Articolo in rivista
Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma / Rundo, L.; Beer, L.; Escudero Sanchez, L.; Crispin-Ortuzar, M.; Reinius, M.; Mccague, C.; Sahin, H.; Bura, V.; Pintican, R.; Zerunian, M.; Ursprung, S.; Allajbeu, I.; Addley, H.; Martin-Gonzalez, P.; Buddenkotte, T.; Singh, N.; Sahdev, A.; Funingana, I. -G.; Jimenez-Linan, M.; Markowetz, F.; Brenton, J. D.; Sala, E.; Woitek, R.. - In: FRONTIERS IN ONCOLOGY. - ISSN 2234-943X. - 12:(2022), pp. 1-12. [10.3389/fonc.2022.868265]
File allegati a questo prodotto
File Dimensione Formato  
Rundo_Clinically-Interpretable-Radiomics-Based-Prediction_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1679700
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact