The main topic of this thesis is the construction of canonical $L_{\infty}$ liftings of the components of the Buchweitz-Flenner semiregularity map for coherent sheaves on complex manifolds, using Chern-Simons classes for curved DG-pairs. As an application, we obtain that the Buchweitz-Flenner semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. We also introduce semiregularity maps for a Lie pair $(\mathcal{L}, \mathcal{A})$ and a locally free $\mathcal{A}$-module, and prove they annihilate all obstructions to deformations of the $\mathcal{A}$-module, provided that a certain spectral sequence degenerates at $E_1$.
L_infinity morphisms and semiregularity / Lepri, Emma. - (2023 May 11).
L_infinity morphisms and semiregularity
LEPRI, EMMA
11/05/2023
Abstract
The main topic of this thesis is the construction of canonical $L_{\infty}$ liftings of the components of the Buchweitz-Flenner semiregularity map for coherent sheaves on complex manifolds, using Chern-Simons classes for curved DG-pairs. As an application, we obtain that the Buchweitz-Flenner semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. We also introduce semiregularity maps for a Lie pair $(\mathcal{L}, \mathcal{A})$ and a locally free $\mathcal{A}$-module, and prove they annihilate all obstructions to deformations of the $\mathcal{A}$-module, provided that a certain spectral sequence degenerates at $E_1$.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Lepri.pdf
accesso aperto
Note: Tesi completa
Tipologia:
Tesi di dottorato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.