An innovative hyaluronan-based nano-delivery system is proposed for the active targeting towards ER+ breast cancer. Hyaluronic acid (HA), an endogenous and bioactive anionic polysaccharide, is functionalized with estradiol (ES), a sexual hormone involved in the development of some hormone-dependent tumors, to give an amphiphilic derivative (HA-ES) able to spontaneously self-assemble in water to form soft nanoparticles or nanogels (NHs). The synthetic strategy used to obtain the polymer derivatives and the physico-chemical properties of the obtained nanogels (ES-NHs) are reported. ES-NHs ability to entrap hydrophobic molecules has also been investigated, by loading curcumin (CUR) and docetaxel (DTX), both able to inhibit the growth of ER+ breast cancer. The formulations are studied for their capability to inhibit the growth of the MCF-7 cell line, thus evaluating their efficacy and potential as a selective drug delivery systems. Our results demonstrate that ES-NHs have not toxic effects on the cell line, and that both ES-NHs/CUR and ES-NHs/DTX treatments inhibit MCF-7 cell growth, with ES-NHs/DTX effect higher than that of free DTX. Our findings support the use of ES-NHs to deliver drugs to ER+ breast cancer cells, assuming a receptor-dependent targeting

Hyaluronan-estradiol nanogels as potential drug carriers to target ER+ breast cancer cell line / Paoletti, L.; Zoratto, N.; Benvenuto, M.; Nardozi, D.; Angiolini, V.; Mancini, P.; Masuelli, L.; Bei, R.; Frajese, G. V.; Matricardi, P.; Nalli, M.; Di Meo, C.. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 314(2023). [10.1016/j.carbpol.2023.120900]

Hyaluronan-estradiol nanogels as potential drug carriers to target ER+ breast cancer cell line

Paoletti, L.;Zoratto, N.;Nardozi, D.;Angiolini V.;Mancini P.;Masuelli, L.;Matricardi P.;Nalli, M.;Di Meo, C.
2023

Abstract

An innovative hyaluronan-based nano-delivery system is proposed for the active targeting towards ER+ breast cancer. Hyaluronic acid (HA), an endogenous and bioactive anionic polysaccharide, is functionalized with estradiol (ES), a sexual hormone involved in the development of some hormone-dependent tumors, to give an amphiphilic derivative (HA-ES) able to spontaneously self-assemble in water to form soft nanoparticles or nanogels (NHs). The synthetic strategy used to obtain the polymer derivatives and the physico-chemical properties of the obtained nanogels (ES-NHs) are reported. ES-NHs ability to entrap hydrophobic molecules has also been investigated, by loading curcumin (CUR) and docetaxel (DTX), both able to inhibit the growth of ER+ breast cancer. The formulations are studied for their capability to inhibit the growth of the MCF-7 cell line, thus evaluating their efficacy and potential as a selective drug delivery systems. Our results demonstrate that ES-NHs have not toxic effects on the cell line, and that both ES-NHs/CUR and ES-NHs/DTX treatments inhibit MCF-7 cell growth, with ES-NHs/DTX effect higher than that of free DTX. Our findings support the use of ES-NHs to deliver drugs to ER+ breast cancer cells, assuming a receptor-dependent targeting
2023
Hyaluronan, estradiol, drug delivery, nanohydrogels, active targeting, breast cancer
01 Pubblicazione su rivista::01a Articolo in rivista
Hyaluronan-estradiol nanogels as potential drug carriers to target ER+ breast cancer cell line / Paoletti, L.; Zoratto, N.; Benvenuto, M.; Nardozi, D.; Angiolini, V.; Mancini, P.; Masuelli, L.; Bei, R.; Frajese, G. V.; Matricardi, P.; Nalli, M.; Di Meo, C.. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 314(2023). [10.1016/j.carbpol.2023.120900]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1678520
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact