In this work we address the question of the existence of nonradial domains inside a nonconvex cone for which a mixed boundary overdetermined problem admits a solution. Our approach is variational, and consists in proving the existence of nonradial minimizers, under a volume constraint, of the associated torsional energy functional. In particular we give a condition on the domain D on the sphere spanning the cone which ensures that the spherical sector is not a minimizer. Similar results are obtained for the relative isoperimetric problem in nonconvex cones.

Existence of Nonradial Domains for Overdetermined and Isoperimetric Problems in Nonconvex Cones / Iacopetti, Alessandro; Pacella, Filomena; Weth, Tobias. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 245:2(2022), pp. 1005-1058. [10.1007/s00205-022-01801-4]

Existence of Nonradial Domains for Overdetermined and Isoperimetric Problems in Nonconvex Cones

Filomena Pacella;
2022

Abstract

In this work we address the question of the existence of nonradial domains inside a nonconvex cone for which a mixed boundary overdetermined problem admits a solution. Our approach is variational, and consists in proving the existence of nonradial minimizers, under a volume constraint, of the associated torsional energy functional. In particular we give a condition on the domain D on the sphere spanning the cone which ensures that the spherical sector is not a minimizer. Similar results are obtained for the relative isoperimetric problem in nonconvex cones.
2022
overdetermined problem ; isoperimetric problem ; nonradial minimizers
01 Pubblicazione su rivista::01a Articolo in rivista
Existence of Nonradial Domains for Overdetermined and Isoperimetric Problems in Nonconvex Cones / Iacopetti, Alessandro; Pacella, Filomena; Weth, Tobias. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 245:2(2022), pp. 1005-1058. [10.1007/s00205-022-01801-4]
File allegati a questo prodotto
File Dimensione Formato  
Iacopetti_Existence_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 743.31 kB
Formato Adobe PDF
743.31 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1678322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact