Background: Guidelines for degenerative cerebellar ataxia neurorehabilitation suggest intensive coordinative training based on physiotherapeutic exercises. Scientific studies demonstrate virtual exergaming therapeutic value. However, patient-based personalization, post processing analyses and specific audio-visual feedbacks are not provided. This paper presents a wearable motion tracking system with recording and playback features. This system has been specifically designed for ataxic patients, for upper limbs coordination studies with the aim to retrain movement in a neurorehabilitation setting. Suggestions from neurologists and ataxia patients were considered to overcome the shortcomings of virtual systems and implement exergaming. Methods: The system consists of the mixed-reality headset Hololens2 and a proprietary exergaming implemented in Unity. Hololens2 can track and save upper limb parameters, head position and gaze direction in runtime. Results: Data collected from a healthy subject are reported to demonstrate features and outputs of the system. Conclusions: Although further improvements and validations are needed, the system meets the needs of a dynamic patient-based exergaming for patients with cerebellar ataxia. Compared with existing solutions, the mixed-reality system is designed to provide an effective and safe therapeutic exergaming that supports both primary and secondary goals of an exergaming: what a patient should do and how patient actions should be performed.
A proof of concept combined using mixed reality for personalized neurorehabilitation of cerebellar ataxic patients / Franzò, Michela; Pica, Andrada; Pascucci, Simona; Serrao, Mariano; Marinozzi, Franco; Bini, Fabiano. - In: SENSORS. - ISSN 1424-8220. - 23:3(2023). [10.3390/s23031680]
A proof of concept combined using mixed reality for personalized neurorehabilitation of cerebellar ataxic patients
Franzò, Michela;Pica, Andrada;Pascucci, Simona;Serrao, Mariano;Marinozzi, Franco;Bini, Fabiano
Ultimo
2023
Abstract
Background: Guidelines for degenerative cerebellar ataxia neurorehabilitation suggest intensive coordinative training based on physiotherapeutic exercises. Scientific studies demonstrate virtual exergaming therapeutic value. However, patient-based personalization, post processing analyses and specific audio-visual feedbacks are not provided. This paper presents a wearable motion tracking system with recording and playback features. This system has been specifically designed for ataxic patients, for upper limbs coordination studies with the aim to retrain movement in a neurorehabilitation setting. Suggestions from neurologists and ataxia patients were considered to overcome the shortcomings of virtual systems and implement exergaming. Methods: The system consists of the mixed-reality headset Hololens2 and a proprietary exergaming implemented in Unity. Hololens2 can track and save upper limb parameters, head position and gaze direction in runtime. Results: Data collected from a healthy subject are reported to demonstrate features and outputs of the system. Conclusions: Although further improvements and validations are needed, the system meets the needs of a dynamic patient-based exergaming for patients with cerebellar ataxia. Compared with existing solutions, the mixed-reality system is designed to provide an effective and safe therapeutic exergaming that supports both primary and secondary goals of an exergaming: what a patient should do and how patient actions should be performed.File | Dimensione | Formato | |
---|---|---|---|
Franzo_PROOF_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.