This paper describes a general physical background that originates integro-differential problems with specific reference to aero-elastic coupling, and offers two techniques of control for this class of problems. The central result of the paper is that integro-differential equations with kernel exponential series admit an optimal solution described, in turn, by a Volterra integral equation in terms of the control. Numerical simulations show how controls prevent the flutter instability of a two-dimensional wing and a wind turbine blade.

Feedback Volterra control of integro-differential equations / Pepe, G.; Paifelman, E.; Carcaterra, A.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - (2022). [10.1080/00207179.2022.2109513]

Feedback Volterra control of integro-differential equations

Pepe G.
;
Paifelman E.;Carcaterra A.
2022

Abstract

This paper describes a general physical background that originates integro-differential problems with specific reference to aero-elastic coupling, and offers two techniques of control for this class of problems. The central result of the paper is that integro-differential equations with kernel exponential series admit an optimal solution described, in turn, by a Volterra integral equation in terms of the control. Numerical simulations show how controls prevent the flutter instability of a two-dimensional wing and a wind turbine blade.
2022
flutter control; Integro-differential equation; optimal feedback control; variational feedback control; Volterra’s equation
01 Pubblicazione su rivista::01a Articolo in rivista
Feedback Volterra control of integro-differential equations / Pepe, G.; Paifelman, E.; Carcaterra, A.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - (2022). [10.1080/00207179.2022.2109513]
File allegati a questo prodotto
File Dimensione Formato  
Pepe_Feedback_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1677748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact