Allostery arises when a ligand-induced change in shape of a binding site of a protein is coupled to a tertiary/quaternary conformational change with a consequent modulation of functional properties. The two-state allosteric model of Monod, Wyman and Changeux [J. Mol. Biol. 1965; 12, 88-118] is an elegant and effective theory to account for protein regulation and control. Tetrameric hemoglobin (Hb), the oxygen transporter of all vertebrates, has been for decades the ideal system to test for the validity of the MWC theory. The small ligands affecting Hb's behavior (organic phosphates, protons, bicarbonate) are produced by the red blood cell during metabolism. By binding to specific sites, these messengers make Hb sensing the environment and reacting consequently. HbI and HbIV from trout and human HbA are classical cooperative models, being similar yet different. They share many fundamental features, starting with the globin fold and the quaternary assembly, and reversible cooperative O2 binding. Nevertheless, they differ in ligand affinity, binding of allosteric effectors, and stability of the quaternary assembly. Here, we recollect essential functional properties and correlate them to the tertiary and quaternary structures available in the protein databank to infer on the molecular basis of the evolution of oxygen transporters.

Modulation of allosteric control and evolution of hemoglobin / Brunori, Maurizio; Miele, Adriana Erica. - In: BIOMOLECULES. - ISSN 2218-273X. - 13:3(2023), p. 572. [10.3390/biom13030572]

Modulation of allosteric control and evolution of hemoglobin

Maurizio Brunori
Primo
Conceptualization
;
Adriana Erica Miele
Ultimo
Formal Analysis
2023

Abstract

Allostery arises when a ligand-induced change in shape of a binding site of a protein is coupled to a tertiary/quaternary conformational change with a consequent modulation of functional properties. The two-state allosteric model of Monod, Wyman and Changeux [J. Mol. Biol. 1965; 12, 88-118] is an elegant and effective theory to account for protein regulation and control. Tetrameric hemoglobin (Hb), the oxygen transporter of all vertebrates, has been for decades the ideal system to test for the validity of the MWC theory. The small ligands affecting Hb's behavior (organic phosphates, protons, bicarbonate) are produced by the red blood cell during metabolism. By binding to specific sites, these messengers make Hb sensing the environment and reacting consequently. HbI and HbIV from trout and human HbA are classical cooperative models, being similar yet different. They share many fundamental features, starting with the globin fold and the quaternary assembly, and reversible cooperative O2 binding. Nevertheless, they differ in ligand affinity, binding of allosteric effectors, and stability of the quaternary assembly. Here, we recollect essential functional properties and correlate them to the tertiary and quaternary structures available in the protein databank to infer on the molecular basis of the evolution of oxygen transporters.
2023
Root effect; allostery; hemoglobin; human HbA; structure-function relationships; trout HbI; trout HbIV
01 Pubblicazione su rivista::01a Articolo in rivista
Modulation of allosteric control and evolution of hemoglobin / Brunori, Maurizio; Miele, Adriana Erica. - In: BIOMOLECULES. - ISSN 2218-273X. - 13:3(2023), p. 572. [10.3390/biom13030572]
File allegati a questo prodotto
File Dimensione Formato  
Brunori_Modulation_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1677365
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact