: Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.

Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis / Meadows, Vik; Marakovits, Corinn; Ekser, Burcin; Kundu, Debjyoti; Zhou, Tianhao; Kyritsi, Konstantina; Pham, Linh; Chen, Lixian; Kennedy, Lindsey; Ceci, Ludovica; Wu, Nan; Carpino, Guido; Zhang, Wenjun; Isidan, Abdulkadir; Meyer, Alison; Owen, Travis; Gaudio, Eugenio; Onori, Paolo; Alpini, Gianfranco; Francis, Heather. - In: AMERICAN JOURNAL OF PHYSIOLOGY. GASTROINTESTINAL AND LIVER PHYSIOLOGY. - ISSN 1522-1547. - 324:1(2023), pp. G60-G77. [10.1152/ajpgi.00112.2022]

Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis

Ceci, Ludovica;Carpino, Guido;Gaudio, Eugenio;Onori, Paolo;Alpini, Gianfranco;
2023

Abstract

: Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.
2023
bile acids; cholehepatic shunt; gut-liver axis; primary sclerosing cholangitis
01 Pubblicazione su rivista::01a Articolo in rivista
Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis / Meadows, Vik; Marakovits, Corinn; Ekser, Burcin; Kundu, Debjyoti; Zhou, Tianhao; Kyritsi, Konstantina; Pham, Linh; Chen, Lixian; Kennedy, Lindsey; Ceci, Ludovica; Wu, Nan; Carpino, Guido; Zhang, Wenjun; Isidan, Abdulkadir; Meyer, Alison; Owen, Travis; Gaudio, Eugenio; Onori, Paolo; Alpini, Gianfranco; Francis, Heather. - In: AMERICAN JOURNAL OF PHYSIOLOGY. GASTROINTESTINAL AND LIVER PHYSIOLOGY. - ISSN 1522-1547. - 324:1(2023), pp. G60-G77. [10.1152/ajpgi.00112.2022]
File allegati a questo prodotto
File Dimensione Formato  
Meadows_Loss_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1677237
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact