Let d \subset d' be finite-dimensional Lie algebras, H=U(d), H' = U(d') the corresponding universal enveloping algebras endowed with the canonical cocommutative Hopf algebra structure. We show that if L is a primitive Lie pseudoalgebra over H then all finite irreducible L' = Cur_H^{H'}-modules are of the form Cur_H^{H'} V , where V is an irreducible L-module, with a single class of exceptions. Indeed, when L=H(d, chi, omega), we introduce non-current L'-modules that are obtained by modifying the current pseudoaction with an extra term depending on an element t \in d' - d, which must satisfy some technical conditions. This, along with results from [2–4], completes the classification of finite irreducible modules of finite simple Lie pseudoalgebras over the universal enveloping algebra of a finite-dimensional Lie algebra.

Irreducible modules over finite simple Lie pseudoalgebras IV. Non-primitive pseudoalgebras / D'Andrea, Alessandro. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - XXIV:Serie 5 Fascicolo 1(2023), pp. 97-140. [10.2422/2036-2145.202109_003]

Irreducible modules over finite simple Lie pseudoalgebras IV. Non-primitive pseudoalgebras.

Alessandro D'Andrea
Primo
2023

Abstract

Let d \subset d' be finite-dimensional Lie algebras, H=U(d), H' = U(d') the corresponding universal enveloping algebras endowed with the canonical cocommutative Hopf algebra structure. We show that if L is a primitive Lie pseudoalgebra over H then all finite irreducible L' = Cur_H^{H'}-modules are of the form Cur_H^{H'} V , where V is an irreducible L-module, with a single class of exceptions. Indeed, when L=H(d, chi, omega), we introduce non-current L'-modules that are obtained by modifying the current pseudoaction with an extra term depending on an element t \in d' - d, which must satisfy some technical conditions. This, along with results from [2–4], completes the classification of finite irreducible modules of finite simple Lie pseudoalgebras over the universal enveloping algebra of a finite-dimensional Lie algebra.
2023
Lie pseudoalgebras; representations; currents
01 Pubblicazione su rivista::01a Articolo in rivista
Irreducible modules over finite simple Lie pseudoalgebras IV. Non-primitive pseudoalgebras / D'Andrea, Alessandro. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - XXIV:Serie 5 Fascicolo 1(2023), pp. 97-140. [10.2422/2036-2145.202109_003]
File allegati a questo prodotto
File Dimensione Formato  
D'Andrea_Irreducible-modules_2023.pdf

solo gestori archivio

Note: file pdf della pubblicazione
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 921.35 kB
Formato Adobe PDF
921.35 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1677037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact