Toward improved understanding and control of the interactions of Li metal anodes with their processing environments, a combined X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) characterization of the effects that O-2, CO2, and N-2, the main gases in dry-atmosphere battery production lines, induced on a reproducibly clean Li surface at room temperature is presented here. XPS measurements demonstrate that O-2 is ten times more effective than CO2 at oxidizing metal Li. Notably, pure N-2 is shown to not dissociate on clean metal Li. UPS results indicate that decomposition of O-2 (CO2) reduces the work function of the Li surface by almost 1 eV, therefore increasing the reduction energy drive for the treated substrate by comparison to bare metallic Li. DFT simulations semiquantitatively account for these results on the basis of the effects of dissociative gas adsorption on the surface dipole density of the Li surface.

Work function evolution in Li anode processing / Etxebarria, Ane; Koch, Stephan L.; Bondarchuk, Oleksandr; Passerini, Stefano; Teobaldi, Gilberto; Ángel Muñoz‐Márquez, Miguel. - In: ADVANCED ENERGY MATERIALS. - ISSN 1614-6832. - 10:24(2020). [10.1002/aenm.202000520]

Work function evolution in Li anode processing

Stefano Passerini
;
2020

Abstract

Toward improved understanding and control of the interactions of Li metal anodes with their processing environments, a combined X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) characterization of the effects that O-2, CO2, and N-2, the main gases in dry-atmosphere battery production lines, induced on a reproducibly clean Li surface at room temperature is presented here. XPS measurements demonstrate that O-2 is ten times more effective than CO2 at oxidizing metal Li. Notably, pure N-2 is shown to not dissociate on clean metal Li. UPS results indicate that decomposition of O-2 (CO2) reduces the work function of the Li surface by almost 1 eV, therefore increasing the reduction energy drive for the treated substrate by comparison to bare metallic Li. DFT simulations semiquantitatively account for these results on the basis of the effects of dissociative gas adsorption on the surface dipole density of the Li surface.
2020
lithium metal anodes; lithium anode processing; lithium-ion batteries
01 Pubblicazione su rivista::01a Articolo in rivista
Work function evolution in Li anode processing / Etxebarria, Ane; Koch, Stephan L.; Bondarchuk, Oleksandr; Passerini, Stefano; Teobaldi, Gilberto; Ángel Muñoz‐Márquez, Miguel. - In: ADVANCED ENERGY MATERIALS. - ISSN 1614-6832. - 10:24(2020). [10.1002/aenm.202000520]
File allegati a questo prodotto
File Dimensione Formato  
Etxebarria_Work_2020.pdf

accesso aperto

Note: full paper
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1676924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 43
social impact