Candida auris is a multidrug-resistant fungus known to be a global public health problem. The skin-based transmission, together with the marked resistance to drugs, resulted in its rapid spread to all continents. The aim of this study was to identify an essential oil (EO) active in the fight against C. auris. A total of 15 EOs were tested against 10 clinical strains of C. auris. Cinnamomum zeylanicum EO (CZ-EO) was the most effective (MIC90 and MFC90 equal to 0.06% vol/vol). Three fractions obtained from CZ-EO, and the cinnamaldehyde (CIN), the major chemical compound, were tested to identify the princi pal compound effectives against C. auris. All CIN-containing samples showed anti-fungal activity. To study the synergy with fluconazole, CZ-EO, its active fraction (FR2), and CIN were tested in checkerboard tests. Results show that CZ-EO and FR2, but not CIN, synergize with fluconazole. Furthermore, only the copresence of CZ-EO or FR2 synergize with flucona zole at therapeutic concentrations of the drug (0.45 6 0.32 mg/mL and 0.64 6 0.67 mg/mL, respectively), while CIN only shows additive activity. In vivo studies conducted on Galleria mel lonella larvae show the absence of toxicity of CZ-EO up to concentrations of 16% vol/vol, and the ability of CZ-EO to reactivate the efficacy of fluconazole when formulated at synergic con centrations. Finally, biochemical tests were made to study the mechanism of action of CZ-EO. These studies show that in the presence of both fluconazole and CZ-EO, the activity of fungal ATPases decreases and, at the same time, the amount of intracellular drug increases. IMPORTANCE This study highlights how small doses of CZ-EO are able to inhibit the secretion of fluconazole and promote its accumulation in the fungal cell. In this man ner, the drug is able to exert its pharmacological effects bypassing the resistance of the yeast. If further studies will confirm this synergy, it will be possible to develop new therapeutic formulations active in the fight against C. auris resistances.
A New Potential Resource in the Fight against Candida auris: the Cinnamomum zeylanicum Essential Oil in Synergy with Antifungal Drug / Di Vito, M.; Garzoli, S.; Rosato, R.; Mariotti, M.; Gervasoni, J.; Santucci, L.; Ovidi, E.; Cacaci, M.; Lombarini, G.; Torelli, R.; Urbani, A.; Sanguinetti, M.; Buglia, F.. - In: MICROBIOLOGY SPECTRUM. - ISSN 2165-0497. - (2023).
A New Potential Resource in the Fight against Candida auris: the Cinnamomum zeylanicum Essential Oil in Synergy with Antifungal Drug
S. GarzoliSecondo
;
2023
Abstract
Candida auris is a multidrug-resistant fungus known to be a global public health problem. The skin-based transmission, together with the marked resistance to drugs, resulted in its rapid spread to all continents. The aim of this study was to identify an essential oil (EO) active in the fight against C. auris. A total of 15 EOs were tested against 10 clinical strains of C. auris. Cinnamomum zeylanicum EO (CZ-EO) was the most effective (MIC90 and MFC90 equal to 0.06% vol/vol). Three fractions obtained from CZ-EO, and the cinnamaldehyde (CIN), the major chemical compound, were tested to identify the princi pal compound effectives against C. auris. All CIN-containing samples showed anti-fungal activity. To study the synergy with fluconazole, CZ-EO, its active fraction (FR2), and CIN were tested in checkerboard tests. Results show that CZ-EO and FR2, but not CIN, synergize with fluconazole. Furthermore, only the copresence of CZ-EO or FR2 synergize with flucona zole at therapeutic concentrations of the drug (0.45 6 0.32 mg/mL and 0.64 6 0.67 mg/mL, respectively), while CIN only shows additive activity. In vivo studies conducted on Galleria mel lonella larvae show the absence of toxicity of CZ-EO up to concentrations of 16% vol/vol, and the ability of CZ-EO to reactivate the efficacy of fluconazole when formulated at synergic con centrations. Finally, biochemical tests were made to study the mechanism of action of CZ-EO. These studies show that in the presence of both fluconazole and CZ-EO, the activity of fungal ATPases decreases and, at the same time, the amount of intracellular drug increases. IMPORTANCE This study highlights how small doses of CZ-EO are able to inhibit the secretion of fluconazole and promote its accumulation in the fungal cell. In this man ner, the drug is able to exert its pharmacological effects bypassing the resistance of the yeast. If further studies will confirm this synergy, it will be possible to develop new therapeutic formulations active in the fight against C. auris resistances.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.