We prove the large deviation principle (LDP) for posterior distributions arising from subfamilies of full exponential families, allowing misspecification of the model. Moreover, motivated by the so-called inverse Sanov Theorem (see eg Ganesh and O'Connell, 1999, Ganesh and O'Connell, 2000), we prove the LDP for the corresponding maximum likelihood estimator, and we study the relationship between rate functions.

An inverse Sanov theorem for exponential families / Macci, Claudio; Piccioni, Mauro. - In: JOURNAL OF STATISTICAL PLANNING AND INFERENCE. - ISSN 0378-3758. - 224:(2023), pp. 54-68. [10.1016/j.jspi.2022.10.003]

An inverse Sanov theorem for exponential families

Mauro Piccioni
2023

Abstract

We prove the large deviation principle (LDP) for posterior distributions arising from subfamilies of full exponential families, allowing misspecification of the model. Moreover, motivated by the so-called inverse Sanov Theorem (see eg Ganesh and O'Connell, 1999, Ganesh and O'Connell, 2000), we prove the LDP for the corresponding maximum likelihood estimator, and we study the relationship between rate functions.
2023
Bayesian consistency; large deviations; Kullback-Leibler divergence; information geometry; misspecified statistical models
01 Pubblicazione su rivista::01a Articolo in rivista
An inverse Sanov theorem for exponential families / Macci, Claudio; Piccioni, Mauro. - In: JOURNAL OF STATISTICAL PLANNING AND INFERENCE. - ISSN 0378-3758. - 224:(2023), pp. 54-68. [10.1016/j.jspi.2022.10.003]
File allegati a questo prodotto
File Dimensione Formato  
Macci_An-inverse-Sanov_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1676288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact