Let S be a compact, connected, oriented surface, possibly with boundary, of negative Euler characteristic. In this article we extend Lindenstrauss–Mirzakhani’s and Hamenstädt’s classification of locally finite mapping class group invariant ergodic measures on the space of measured laminations ML(S) to the space of geodesic currents C(S), and we discuss the homogeneous case. Moreover, we extend Lindenstrauss–Mirzakhani’s classification of orbit closures to C(S). Our argument relies on their results and on the decomposition of a current into a sum of three currents with isotopically disjoint supports: a measured lamination without closed leaves, a simple multi-curve and a current that binds its hull.

ERGODIC INVARIANT MEASURES ON THE SPACE OF GEODESIC CURRENTS / Erlandsson, V.; Mondello, G.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 72:6(2022), pp. 2449-2513. [10.5802/aif.3498]

ERGODIC INVARIANT MEASURES ON THE SPACE OF GEODESIC CURRENTS

Erlandsson V.;Mondello G.
2022

Abstract

Let S be a compact, connected, oriented surface, possibly with boundary, of negative Euler characteristic. In this article we extend Lindenstrauss–Mirzakhani’s and Hamenstädt’s classification of locally finite mapping class group invariant ergodic measures on the space of measured laminations ML(S) to the space of geodesic currents C(S), and we discuss the homogeneous case. Moreover, we extend Lindenstrauss–Mirzakhani’s classification of orbit closures to C(S). Our argument relies on their results and on the decomposition of a current into a sum of three currents with isotopically disjoint supports: a measured lamination without closed leaves, a simple multi-curve and a current that binds its hull.
2022
Hyperbolic surfaces; geodesic currents; mapping class group; measure classification
01 Pubblicazione su rivista::01a Articolo in rivista
ERGODIC INVARIANT MEASURES ON THE SPACE OF GEODESIC CURRENTS / Erlandsson, V.; Mondello, G.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 72:6(2022), pp. 2449-2513. [10.5802/aif.3498]
File allegati a questo prodotto
File Dimensione Formato  
Erlandsson_Ergodic-invariant_2022.pdf

accesso aperto

Note: Articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1676245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact