VERITAS mission, recently selected as part of NASA's Discovery program, will allow the investigation of the geological history of Venus, the mapping of its surface to study volcanic and tectonic processes and giving to scientists a unique opportunity to understand its geological activity. The spacecraft will carry the instrument VISAR, an interferometric X-band synthetic aperture radar (SAR) that will provide global 30 m medium resolution imagery of the surface and topographic maps with a spatial resolution of 250 m and a height accuracy of 5 m. Looking at VERITAS mission, our work combines information obtained both from Digital Elevation Models (DEM) and SAR data acquired over time, in order to study terrestrial lava flows properties. We selected the Pacaya volcano in Guatemala and, supported by the corresponding geological maps, we identified and isolated some of its relevant lava flows. We used SENTINEL-1 SAR data acquired at C band and surface local incidence angle obtained from high resolution DEMs, to study lava flows backscattering coefficient behavior with respect to the incidence angle variation, along with EM formulation. Through fitting theoretical models, scattering laws provided us an estimate for lava flows dielectric properties and roughness. Our research shows a backscattering behavior which changes among different lava flows, in addition we find a seasonal behavior of the backscattering as function of the wet/dry periods of Pacaya. This behavior would not have been detectable without the initial lava flows segmentation, performed before the overall analysis. This selection indeed made possible the study of backscattering coefficient of regions with separately uniform and stationary surface parameters.

Radar backscattering properties of lava flows on Earth and Venus / Murra, Allegra; Mastrogiuseppe, Marco; Alberti, Giovanni; Gambacorta, Letizia; Seu, Roberto. - (2023). (Intervento presentato al convegno EGU General Assembly 2023 tenutosi a Vienna, Austria).

Radar backscattering properties of lava flows on Earth and Venus

Allegra Murra
;
Marco Mastrogiuseppe;Letizia Gambacorta;Roberto Seu
2023

Abstract

VERITAS mission, recently selected as part of NASA's Discovery program, will allow the investigation of the geological history of Venus, the mapping of its surface to study volcanic and tectonic processes and giving to scientists a unique opportunity to understand its geological activity. The spacecraft will carry the instrument VISAR, an interferometric X-band synthetic aperture radar (SAR) that will provide global 30 m medium resolution imagery of the surface and topographic maps with a spatial resolution of 250 m and a height accuracy of 5 m. Looking at VERITAS mission, our work combines information obtained both from Digital Elevation Models (DEM) and SAR data acquired over time, in order to study terrestrial lava flows properties. We selected the Pacaya volcano in Guatemala and, supported by the corresponding geological maps, we identified and isolated some of its relevant lava flows. We used SENTINEL-1 SAR data acquired at C band and surface local incidence angle obtained from high resolution DEMs, to study lava flows backscattering coefficient behavior with respect to the incidence angle variation, along with EM formulation. Through fitting theoretical models, scattering laws provided us an estimate for lava flows dielectric properties and roughness. Our research shows a backscattering behavior which changes among different lava flows, in addition we find a seasonal behavior of the backscattering as function of the wet/dry periods of Pacaya. This behavior would not have been detectable without the initial lava flows segmentation, performed before the overall analysis. This selection indeed made possible the study of backscattering coefficient of regions with separately uniform and stationary surface parameters.
2023
EGU General Assembly 2023
04 Pubblicazione in atti di convegno::04d Abstract in atti di convegno
Radar backscattering properties of lava flows on Earth and Venus / Murra, Allegra; Mastrogiuseppe, Marco; Alberti, Giovanni; Gambacorta, Letizia; Seu, Roberto. - (2023). (Intervento presentato al convegno EGU General Assembly 2023 tenutosi a Vienna, Austria).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1675885
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact