We characterize the integral cohomology and the rational homotopy type of the maximal Borel-equivariantization of the combined Hopf/twistor fibration, and find that subtle relations satisfied by the cohomology generators are just those that govern Horava-Witten's proposal for the extension of the Green-Schwarz mechanism from heterotic string theory to heterotic M-theory. We discuss how this squares with the Hypothesis H that the elusive mathematical foundation of M-theory is based on charge quantization in tangentially twisted unstable Cohomotopy theory.
Twistorial cohomotopy implies Green-Schwarz anomaly cancellation / Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - 34:05(2022). [10.1142/s0129055x22500131]
Twistorial cohomotopy implies Green-Schwarz anomaly cancellation
Domenico Fiorenza;
2022
Abstract
We characterize the integral cohomology and the rational homotopy type of the maximal Borel-equivariantization of the combined Hopf/twistor fibration, and find that subtle relations satisfied by the cohomology generators are just those that govern Horava-Witten's proposal for the extension of the Green-Schwarz mechanism from heterotic string theory to heterotic M-theory. We discuss how this squares with the Hypothesis H that the elusive mathematical foundation of M-theory is based on charge quantization in tangentially twisted unstable Cohomotopy theory.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_Twistorial-cohomotopy_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Contatta l'autore |
Fiorenza_postprint_Twistorial-cohomotopy_2022.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
610.61 kB
Formato
Adobe PDF
|
610.61 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.