In this paper, we introduce the Kantorovich version of complex Shepard operators in order to approximate functions whose pth powers are integrable on the unit square. We also give an application which explains why we need such operators. Furthermore, we study the effects of some regular summability methods on this L-p-approximation. (C) 2022 Elsevier Inc. All rights reserved.
Approximation to Integrable Functions by Modified Complex Shepard Operators / Duman, Oktay; DELLA VECCHIA, Biancamaria. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 512:2(2022), p. 126161. [10.1016/j.jmaa.2022.126161]
Approximation to Integrable Functions by Modified Complex Shepard Operators
Biancamaria Della Vecchia
2022
Abstract
In this paper, we introduce the Kantorovich version of complex Shepard operators in order to approximate functions whose pth powers are integrable on the unit square. We also give an application which explains why we need such operators. Furthermore, we study the effects of some regular summability methods on this L-p-approximation. (C) 2022 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Duman_Approximation_2022.pdf
solo gestori archivio
Note: Lavoro pubblicato
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Contatta l'autore |
Duman_postprint_Approximation_2022.pdf
accesso aperto
Note: post-print
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
994.01 kB
Formato
Adobe PDF
|
994.01 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.