In this paper, we introduce the Kantorovich version of complex Shepard operators in order to approximate functions whose pth powers are integrable on the unit square. We also give an application which explains why we need such operators. Furthermore, we study the effects of some regular summability methods on this L-p-approximation. (C) 2022 Elsevier Inc. All rights reserved.

Approximation to Integrable Functions by Modified Complex Shepard Operators / Duman, Oktay; DELLA VECCHIA, Biancamaria. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 512:2(2022), p. 126161. [10.1016/j.jmaa.2022.126161]

Approximation to Integrable Functions by Modified Complex Shepard Operators

Biancamaria Della Vecchia
2022

Abstract

In this paper, we introduce the Kantorovich version of complex Shepard operators in order to approximate functions whose pth powers are integrable on the unit square. We also give an application which explains why we need such operators. Furthermore, we study the effects of some regular summability methods on this L-p-approximation. (C) 2022 Elsevier Inc. All rights reserved.
2022
Approximation in the complex plane; Shepard operators; Kantorovich operators; Matrix summabiliy methods; Cesaro summability
01 Pubblicazione su rivista::01a Articolo in rivista
Approximation to Integrable Functions by Modified Complex Shepard Operators / Duman, Oktay; DELLA VECCHIA, Biancamaria. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 512:2(2022), p. 126161. [10.1016/j.jmaa.2022.126161]
File allegati a questo prodotto
File Dimensione Formato  
Duman_Approximation_2022.pdf

solo gestori archivio

Note: Lavoro pubblicato
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Contatta l'autore
Duman_postprint_Approximation_2022.pdf

accesso aperto

Note: post-print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 994.01 kB
Formato Adobe PDF
994.01 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1675525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact