We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o(1/n) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results.
Parallel random block-coordinate forward-backward algorithm: a unified convergence analysis / Salzo, S; Villa, S. - In: MATHEMATICAL PROGRAMMING. - ISSN 0025-5610. - 193:1(2022), pp. 225-269. [10.1007/s10107-020-01602-1]
Parallel random block-coordinate forward-backward algorithm: a unified convergence analysis
Salzo, S
;
2022
Abstract
We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o(1/n) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results.File | Dimensione | Formato | |
---|---|---|---|
Salzo_Parallel_2022.pdf
solo gestori archivio
Note: DOI https://doi.org/10.1007/s10107-020-01602-1
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
934.39 kB
Formato
Adobe PDF
|
934.39 kB | Adobe PDF | Contatta l'autore |
Salzo_preprint_Parallel_2020.pdf
accesso aperto
Note: DOI https://doi.org/10.1007/s10107-020-01602-1
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
731.9 kB
Formato
Adobe PDF
|
731.9 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.