We prove that for k ≫; 4√n regular resolution requires length nω(k) to establish that an ErdÅ's-Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional nω(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.
Clique Is Hard on Average for Regular Resolution / Atserias, A.; Bonacina, I.; De Rezende, S. F.; Lauria, M.; Nordstrom, J.; Razborov, A.. - In: JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY. - ISSN 0004-5411. - 68:4(2021), pp. 1-32.
Clique Is Hard on Average for Regular Resolution
Bonacina I.;Lauria M.;
2021
Abstract
We prove that for k ≫; 4√n regular resolution requires length nω(k) to establish that an ErdÅ's-Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional nω(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.File | Dimensione | Formato | |
---|---|---|---|
Atserias_Klique_2020.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
387.67 kB
Formato
Adobe PDF
|
387.67 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.