Unrefinable partitions are a subset of partitions into distinct parts which satisfy an additional unrefinability property. More precisely, being an unrefinable partition means that none of the parts can be written as the sum of smaller integers without introducing a repetition. We address the algorithmic aspects of unrefinable partitions, such as testing whether a given partition is unrefinable or not and enumerating all the partitions whose sum is a given integer. We design two algorithms to solve the two mentioned problems and we discuss their complexity. (c) 2023 Elsevier B.V. All rights reserved.

Verification and generation of unrefinable partitions / Aragona, R; Campioni, L; Civino, R; Lauria, M. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 181:(2023), pp. 1-15. [10.1016/j.ipl.2023.106361]

Verification and generation of unrefinable partitions

Aragona, R;Lauria, M
2023

Abstract

Unrefinable partitions are a subset of partitions into distinct parts which satisfy an additional unrefinability property. More precisely, being an unrefinable partition means that none of the parts can be written as the sum of smaller integers without introducing a repetition. We address the algorithmic aspects of unrefinable partitions, such as testing whether a given partition is unrefinable or not and enumerating all the partitions whose sum is a given integer. We design two algorithms to solve the two mentioned problems and we discuss their complexity. (c) 2023 Elsevier B.V. All rights reserved.
2023
Integer partitions into distinct part; Minimal excludant; Algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
Verification and generation of unrefinable partitions / Aragona, R; Campioni, L; Civino, R; Lauria, M. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 181:(2023), pp. 1-15. [10.1016/j.ipl.2023.106361]
File allegati a questo prodotto
File Dimensione Formato  
Aragona_Verification-and-generation_2023.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 387.18 kB
Formato Adobe PDF
387.18 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1675246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact