In this paper, we construct measures which minimize a discrete version of the stochastic Mather problem associated to a Tonelli Lagrangian $L:\T^d\times\R^d\to\R$, where $\T^d=\R^d/\Z^d$ is the flat $d$--dimensional torus. We show that the discrete variational problems approximate the stochastic Mather problem as the step of the discretisation goes to zero, in the sense that the minima of the discrete problems converge to the minimum of the stochastic Mather problem and the discrete minimizing measures converge to the unique stochastic Mather measure.

Discrete approximation of stochastic Mather measures / Davini, Andrea; Iturriaga, Renato; Perez Garmendia, Jose Luis; Pardo, Juan Carlos; Morgado, Hector Sanchez. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2021), pp. 1-15. [10.1090/proc/15463]

Discrete approximation of stochastic Mather measures

Davini, Andrea;
2021

Abstract

In this paper, we construct measures which minimize a discrete version of the stochastic Mather problem associated to a Tonelli Lagrangian $L:\T^d\times\R^d\to\R$, where $\T^d=\R^d/\Z^d$ is the flat $d$--dimensional torus. We show that the discrete variational problems approximate the stochastic Mather problem as the step of the discretisation goes to zero, in the sense that the minima of the discrete problems converge to the minimum of the stochastic Mather problem and the discrete minimizing measures converge to the unique stochastic Mather measure.
2021
Mather measures; weak KAM Theory; discretization
01 Pubblicazione su rivista::01a Articolo in rivista
Discrete approximation of stochastic Mather measures / Davini, Andrea; Iturriaga, Renato; Perez Garmendia, Jose Luis; Pardo, Juan Carlos; Morgado, Hector Sanchez. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2021), pp. 1-15. [10.1090/proc/15463]
File allegati a questo prodotto
File Dimensione Formato  
Davini_Discrete-approximation_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 333.08 kB
Formato Adobe PDF
333.08 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1675173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact