We conduct a combined experimental and theoretical study of the quantum confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction. Calculations based on the configuration-interaction method show excellent quantitative agreement with the experiment and allow us to elucidate the role of Coulomb interactions among the confined particles and-even more importantly-of electronic correlation effects on the Stark shifts. Moreover, we show how the electric field alters properties such as built-in dipole, binding energy, and heavy-light hole mixing of multiparticle complexes in weakly confining systems, underlining the deficiencies of commonly used models for the quantum confined Stark effect.
Electric field induced tuning of electronic correlation in weakly confining quantum dots / Huang, Huiying; Csontosová, Diana; Manna, Santanu; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Klenovský, Petr. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 104:16(2021), pp. 1-11. [10.1103/physrevb.104.165401]
Electric field induced tuning of electronic correlation in weakly confining quantum dots
Rinaldo Trotta;
2021
Abstract
We conduct a combined experimental and theoretical study of the quantum confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction. Calculations based on the configuration-interaction method show excellent quantitative agreement with the experiment and allow us to elucidate the role of Coulomb interactions among the confined particles and-even more importantly-of electronic correlation effects on the Stark shifts. Moreover, we show how the electric field alters properties such as built-in dipole, binding energy, and heavy-light hole mixing of multiparticle complexes in weakly confining systems, underlining the deficiencies of commonly used models for the quantum confined Stark effect.File | Dimensione | Formato | |
---|---|---|---|
Huang_Electric-field-induced_2021.pdf
accesso aperto
Note: Articolo su rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.