We study existence and uniqueness of nonnegative solutions to a problem which is modeled by {-Δpu=u-θ|∇u|p+fu-γinΩ,u=0on∂Ω,where Ω is an open bounded subset of RN (N≥ 2), Δ p is the p-Laplacian operator (1 < p< N), f∈ L1(Ω) is nonnegative and θ, γ≥ 0. Examples and extensions are discussed at the end of the paper.

Existence and uniqueness of solutions to some singular equations with natural growth / Oliva, F.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:1(2021), pp. 287-314. [10.1007/s10231-020-00996-1]

Existence and uniqueness of solutions to some singular equations with natural growth

Oliva F.
2021

Abstract

We study existence and uniqueness of nonnegative solutions to a problem which is modeled by {-Δpu=u-θ|∇u|p+fu-γinΩ,u=0on∂Ω,where Ω is an open bounded subset of RN (N≥ 2), Δ p is the p-Laplacian operator (1 < p< N), f∈ L1(Ω) is nonnegative and θ, γ≥ 0. Examples and extensions are discussed at the end of the paper.
2021
Gradient terms; Nonlinear elliptic equations; p-Laplacian; Renormalized solutions; Singular elliptic equations
01 Pubblicazione su rivista::01a Articolo in rivista
Existence and uniqueness of solutions to some singular equations with natural growth / Oliva, F.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:1(2021), pp. 287-314. [10.1007/s10231-020-00996-1]
File allegati a questo prodotto
File Dimensione Formato  
Oliva_Existence_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1674506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact