We study existence and uniqueness of nonnegative solutions to a problem which is modeled by {-Δpu=u-θ|∇u|p+fu-γinΩ,u=0on∂Ω,where Ω is an open bounded subset of RN (N≥ 2), Δ p is the p-Laplacian operator (1 < p< N), f∈ L1(Ω) is nonnegative and θ, γ≥ 0. Examples and extensions are discussed at the end of the paper.
Existence and uniqueness of solutions to some singular equations with natural growth / Oliva, F.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:1(2021), pp. 287-314. [10.1007/s10231-020-00996-1]
Existence and uniqueness of solutions to some singular equations with natural growth
Oliva F.
2021
Abstract
We study existence and uniqueness of nonnegative solutions to a problem which is modeled by {-Δpu=u-θ|∇u|p+fu-γinΩ,u=0on∂Ω,where Ω is an open bounded subset of RN (N≥ 2), Δ p is the p-Laplacian operator (1 < p< N), f∈ L1(Ω) is nonnegative and θ, γ≥ 0. Examples and extensions are discussed at the end of the paper.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Oliva_Existence_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.04 MB
Formato
Adobe PDF
|
4.04 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.