In this paper, we study the Γ-limit, as p → 1, of the functional Jp(u) = ∫ω |∇u|p + β ∫ ∂ ω|u|p/ ∫ω|u|p, where ω is a smooth bounded open set in ℝN, p > 1 and β is a real number. Among our results, for β > - 1, we derive an isoperimetric inequality for Λ (ω, β) = infuϵBV (ω), u ≢ 0 |Du| (ω) + min (β, 1) ∫∂ ω |u|/∫ω |u| which is the limit as p → 1 + of λ λ(ω, p, β) = minuϵ W1,p (ω) Jp (u). We show that among all bounded and smooth open sets with given volume, the ball maximizes Λ (ω, β) when β ϵ (- 1, 0) and minimizes Λ (ω, β) when β ϵ [0, ∞).

On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1 / Della Pietra, F.; Nitsch, C.; Oliva, F.; Trombetti, C.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8266. - 0:0(2023). [10.1515/acv-2021-0085]

On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1

Oliva F.;
2023

Abstract

In this paper, we study the Γ-limit, as p → 1, of the functional Jp(u) = ∫ω |∇u|p + β ∫ ∂ ω|u|p/ ∫ω|u|p, where ω is a smooth bounded open set in ℝN, p > 1 and β is a real number. Among our results, for β > - 1, we derive an isoperimetric inequality for Λ (ω, β) = infuϵBV (ω), u ≢ 0 |Du| (ω) + min (β, 1) ∫∂ ω |u|/∫ω |u| which is the limit as p → 1 + of λ λ(ω, p, β) = minuϵ W1,p (ω) Jp (u). We show that among all bounded and smooth open sets with given volume, the ball maximizes Λ (ω, β) when β ϵ (- 1, 0) and minimizes Λ (ω, β) when β ϵ [0, ∞).
2023
First Robin eigenvalue; isoperimetric inequalities
01 Pubblicazione su rivista::01a Articolo in rivista
On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1 / Della Pietra, F.; Nitsch, C.; Oliva, F.; Trombetti, C.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8266. - 0:0(2023). [10.1515/acv-2021-0085]
File allegati a questo prodotto
File Dimensione Formato  
DellaPietra_Robin_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 765.78 kB
Formato Adobe PDF
765.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1674503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact