We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by{−Δpu=fuγ+guqinΩ,u=0on∂Ω, where Ω is an open bounded subset of ℝN where Ω is an open bounded subset of ℝN, Δpu := ÷(|∇u|p− 2∇u) is the usual p-Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue spaces.
Comparison principle for elliptic equations with mixed singular nonlinearities / Durastanti, R.; Oliva, F.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 57:1(2022), pp. 83-100. [10.1007/s11118-021-09906-3]
Comparison principle for elliptic equations with mixed singular nonlinearities
Durastanti R.;Oliva F.
2022
Abstract
We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by{−Δpu=fuγ+guqinΩ,u=0on∂Ω, where Ω is an open bounded subset of ℝN where Ω is an open bounded subset of ℝN, Δpu := ÷(|∇u|p− 2∇u) is the usual p-Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue spaces.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Durastanti_Comparison_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
402.62 kB
Formato
Adobe PDF
|
402.62 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.