In this work, we investigate the processability and the volumetric electrical properties of nanocomposites made of aerospace-grade RTM6, loaded with different carbon nanoparticles. Nanocomposites with graphene nanoplatelets (GNP), single-walled carbon nanotubes (SWCNT) and hybrid GNP/SWCNT in the ratio 2:8 (GNP2SWCNT8), 5:5 (GNP5SWCNT5) and 8:2 (GNP8SWCNT2) were manufactured and analyzed. The hybrid nanofillers are observed to have synergistic properties as epoxy/hybrid mixtures showed better processability than epoxy/SWCNT, while maintaining high values of electrical conductivity. On the other hand, epoxy/SWCNT nanocomposites present the highest electrical conductivities with the formation of a percolating conductive network at lower filler content, but very large viscosity values and filler dispersion issues, which significantly affect the final quality of the samples. Hybrid nanofiller allows us to overcome the manufacturing issues typically associated with the use of SWCNTs. The combination of low viscosity and high electrical conductivity makes the hybrid nanofiller a good candidate for the fabrication of aerospace-grade nanocomposites with multifunctional properties.
Hybrid carbon nanocomposites made of aerospace-grade epoxy showing synergistic effects in electrical properties and high processability / Zaccardi, Federica; Toto, Elisa; Marra, Fabrizio; Santonicola, Mariagabriella; Laurenzi, Susanna. - In: POLYMERS. - ISSN 2073-4360. - 15:5(2023). [10.3390/polym15051163]
Hybrid carbon nanocomposites made of aerospace-grade epoxy showing synergistic effects in electrical properties and high processability
Federica ZaccardiPrimo
Investigation
;Elisa TotoSecondo
Formal Analysis
;Fabrizio MarraInvestigation
;Mariagabriella SantonicolaPenultimo
Validation
;Susanna Laurenzi
Ultimo
Supervision
2023
Abstract
In this work, we investigate the processability and the volumetric electrical properties of nanocomposites made of aerospace-grade RTM6, loaded with different carbon nanoparticles. Nanocomposites with graphene nanoplatelets (GNP), single-walled carbon nanotubes (SWCNT) and hybrid GNP/SWCNT in the ratio 2:8 (GNP2SWCNT8), 5:5 (GNP5SWCNT5) and 8:2 (GNP8SWCNT2) were manufactured and analyzed. The hybrid nanofillers are observed to have synergistic properties as epoxy/hybrid mixtures showed better processability than epoxy/SWCNT, while maintaining high values of electrical conductivity. On the other hand, epoxy/SWCNT nanocomposites present the highest electrical conductivities with the formation of a percolating conductive network at lower filler content, but very large viscosity values and filler dispersion issues, which significantly affect the final quality of the samples. Hybrid nanofiller allows us to overcome the manufacturing issues typically associated with the use of SWCNTs. The combination of low viscosity and high electrical conductivity makes the hybrid nanofiller a good candidate for the fabrication of aerospace-grade nanocomposites with multifunctional properties.File | Dimensione | Formato | |
---|---|---|---|
Zaccardi_Hybrid-carbon-nanocomposites_2023.pdf
accesso aperto
Note: Articolo su rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.22 MB
Formato
Adobe PDF
|
3.22 MB | Adobe PDF | Visualizza/Apri PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.