Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model ∂tU = U {f(U) − dV } , ∂tV = ∂x {f(U) ∂xV } + rV f(V ) , where f(u) = 1 − u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimes d > 1 : (U−, V−)=(0, 1) and (U+, V+)=(1, 0), d < 1 : (U−, V−)=(1 − d, 1) and (U+, V+)=(1, 0), which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0.

Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity / Gallay, Thierry; Mascia, Corrado. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 63:(2022). [10.1016/j.nonrwa.2021.103387]

Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity

Thierry Gallay
Primo
;
Corrado Mascia
Secondo
2022

Abstract

Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model ∂tU = U {f(U) − dV } , ∂tV = ∂x {f(U) ∂xV } + rV f(V ) , where f(u) = 1 − u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimes d > 1 : (U−, V−)=(0, 1) and (U+, V+)=(1, 0), d < 1 : (U−, V−)=(1 − d, 1) and (U+, V+)=(1, 0), which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0.
2022
Reaction–diffusion systems; cross-dependent self-diffusivity; traveling wave solutions; degenerate diffusion; singular perturbation
01 Pubblicazione su rivista::01a Articolo in rivista
Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity / Gallay, Thierry; Mascia, Corrado. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 63:(2022). [10.1016/j.nonrwa.2021.103387]
File allegati a questo prodotto
File Dimensione Formato  
Gallay_Propagation_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Contatta l'autore
Gallay_preprint_Propagation_2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 718.93 kB
Formato Adobe PDF
718.93 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1674293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact