Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model ∂tU = U {f(U) − dV } , ∂tV = ∂x {f(U) ∂xV } + rV f(V ) , where f(u) = 1 − u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimes d > 1 : (U−, V−)=(0, 1) and (U+, V+)=(1, 0), d < 1 : (U−, V−)=(1 − d, 1) and (U+, V+)=(1, 0), which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0.
Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity / Gallay, Thierry; Mascia, Corrado. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 63:(2022). [10.1016/j.nonrwa.2021.103387]
Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity
Thierry GallayPrimo
;Corrado Mascia
Secondo
2022
Abstract
Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model ∂tU = U {f(U) − dV } , ∂tV = ∂x {f(U) ∂xV } + rV f(V ) , where f(u) = 1 − u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimes d > 1 : (U−, V−)=(0, 1) and (U+, V+)=(1, 0), d < 1 : (U−, V−)=(1 − d, 1) and (U+, V+)=(1, 0), which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0.File | Dimensione | Formato | |
---|---|---|---|
Gallay_Propagation_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Contatta l'autore |
Gallay_preprint_Propagation_2022.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
718.93 kB
Formato
Adobe PDF
|
718.93 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.