Let $\O\subset\R^N$ be a smooth bounded domain with $N\ge2$ and $\O_\e=\O\backslash B(P,\e)$ where $B(P,\e)$ is the ball centered at $P\in\O$ and radius $\e$. In this paper, we establish the number, location and non-degeneracy of critical points of the Robin function in $\O_\e$ for $\e$ small enough. We will show that the location of $P$ plays a crucial role on the existence and multiplicity of the critical points. The proof of our result is a consequence of delicate estimates on the Green function near to $\partial B(P,\e)$. Some applications to compute the exact number of solutions of related well-studied nonlinear elliptic problems will be showed.

Qualitative analysis on the critical points of the Robin function / Gladiali, F.; Grossi, M.; Luo, P.; Yan, S.. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - (2023).

Qualitative analysis on the critical points of the Robin function

M. Grossi
;
2023

Abstract

Let $\O\subset\R^N$ be a smooth bounded domain with $N\ge2$ and $\O_\e=\O\backslash B(P,\e)$ where $B(P,\e)$ is the ball centered at $P\in\O$ and radius $\e$. In this paper, we establish the number, location and non-degeneracy of critical points of the Robin function in $\O_\e$ for $\e$ small enough. We will show that the location of $P$ plays a crucial role on the existence and multiplicity of the critical points. The proof of our result is a consequence of delicate estimates on the Green function near to $\partial B(P,\e)$. Some applications to compute the exact number of solutions of related well-studied nonlinear elliptic problems will be showed.
2023
Robin function, Green's function, Critical points, Nondegeneracy
01 Pubblicazione su rivista::01a Articolo in rivista
Qualitative analysis on the critical points of the Robin function / Gladiali, F.; Grossi, M.; Luo, P.; Yan, S.. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - (2023).
File allegati a questo prodotto
File Dimensione Formato  
Gladiali_Qualitativeanalysis_2023.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1674283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact