Adopting quantum resources for parameter estimation discloses the possibility to realize quantum sensors operating at a sensitivity beyond the standard quantum limit. Such an approach promises to reach the fundamental Heisenberg scaling as a function of the employed resources N in the estimation process. Although previous experiments demonstrated precision scaling approaching Heisenberg-limited performances, reaching such a regime for a wide range of N remains hard to accomplish. Here, we show a method that suitably allocates the available resources permitting them to reach the same power law of Heisenberg scaling without any prior information on the parameter. We demonstrate experimentally such an advantage in measuring a rotation angle. We quantitatively verify sub-standard quantum limit performances for a considerable range of N (O(30,000)) by using single-photon states with high-order orbital angular momentum, achieving an error reduction, in terms of the obtained variance, >10 dB below the standard quantum limit. Such results can be applied to different scenarios, opening the way to the optimization of resources in quantum sensing.

Experimental metrology beyond the standard quantum limit for a wide resources range / Cimini, Valeria; Polino, Emanuele; Belliardo, Federico; Hoch, Francesco; Piccirillo, Bruno; Spagnolo, Nicolo'; Giovannetti, Vittorio; Sciarrino, Fabio. - In: NPJ QUANTUM INFORMATION. - ISSN 2056-6387. - 9:1(2023). [10.1038/s41534-023-00691-y]

Experimental metrology beyond the standard quantum limit for a wide resources range

Cimini, Valeria;Hoch, Francesco;Spagnolo, Nicolo';Sciarrino, Fabio
2023

Abstract

Adopting quantum resources for parameter estimation discloses the possibility to realize quantum sensors operating at a sensitivity beyond the standard quantum limit. Such an approach promises to reach the fundamental Heisenberg scaling as a function of the employed resources N in the estimation process. Although previous experiments demonstrated precision scaling approaching Heisenberg-limited performances, reaching such a regime for a wide range of N remains hard to accomplish. Here, we show a method that suitably allocates the available resources permitting them to reach the same power law of Heisenberg scaling without any prior information on the parameter. We demonstrate experimentally such an advantage in measuring a rotation angle. We quantitatively verify sub-standard quantum limit performances for a considerable range of N (O(30,000)) by using single-photon states with high-order orbital angular momentum, achieving an error reduction, in terms of the obtained variance, >10 dB below the standard quantum limit. Such results can be applied to different scenarios, opening the way to the optimization of resources in quantum sensing.
2023
quantum sensing; orbital angular momentum; parameter estimation
01 Pubblicazione su rivista::01a Articolo in rivista
Experimental metrology beyond the standard quantum limit for a wide resources range / Cimini, Valeria; Polino, Emanuele; Belliardo, Federico; Hoch, Francesco; Piccirillo, Bruno; Spagnolo, Nicolo'; Giovannetti, Vittorio; Sciarrino, Fabio. - In: NPJ QUANTUM INFORMATION. - ISSN 2056-6387. - 9:1(2023). [10.1038/s41534-023-00691-y]
File allegati a questo prodotto
File Dimensione Formato  
Cimini_Experimental_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1673561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact