For each affine Kac-Moody algebra X(r) n of rank l, r = 1, 2, or 3, and for ev-ery choice of a vertex cm, m = 0, ... , l, of the corresponding Dynkin diagram, by using the matrix-resolvent method we define a gauge-invariant tau-structure for the associated Drinfeld-Sokolov hierarchy and give explicit formulas for generating series of logarithmic derivatives of the tau-function in terms of matrix resolvents, extending the results of [Mosc. Math. J. 21 (2021), 233-270, arXiv:1610.07534] with r = 1 and m = 0. For the case r = 1 and m = 0, we verify that the above-defined tau-structure agrees with the axioms of Hamil-tonian tau-symmetry in the sense of [Adv. Math. 293 (2016), 382-435, arXiv:1409.4616] and [arXiv:math.DG/0108160].

Affine Kac-Moody Algebras and Tau-Functions for the Drinfeld-Sokolov Hierarchies: the Matrix-Resolvent Method / Dubrovin, Boris; Valeri, Daniele; Yang, Di. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 18:(2022). [10.3842/sigma.2022.077]

Affine Kac-Moody Algebras and Tau-Functions for the Drinfeld-Sokolov Hierarchies: the Matrix-Resolvent Method

Daniele Valeri;
2022

Abstract

For each affine Kac-Moody algebra X(r) n of rank l, r = 1, 2, or 3, and for ev-ery choice of a vertex cm, m = 0, ... , l, of the corresponding Dynkin diagram, by using the matrix-resolvent method we define a gauge-invariant tau-structure for the associated Drinfeld-Sokolov hierarchy and give explicit formulas for generating series of logarithmic derivatives of the tau-function in terms of matrix resolvents, extending the results of [Mosc. Math. J. 21 (2021), 233-270, arXiv:1610.07534] with r = 1 and m = 0. For the case r = 1 and m = 0, we verify that the above-defined tau-structure agrees with the axioms of Hamil-tonian tau-symmetry in the sense of [Adv. Math. 293 (2016), 382-435, arXiv:1409.4616] and [arXiv:math.DG/0108160].
2022
tau -function; Drinfeld-Sokolov hierarchy; matrix resolvent; Kac-Moody algebra
01 Pubblicazione su rivista::01a Articolo in rivista
Affine Kac-Moody Algebras and Tau-Functions for the Drinfeld-Sokolov Hierarchies: the Matrix-Resolvent Method / Dubrovin, Boris; Valeri, Daniele; Yang, Di. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 18:(2022). [10.3842/sigma.2022.077]
File allegati a questo prodotto
File Dimensione Formato  
Dubrovin_Affine-Kac–Moody_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 655.23 kB
Formato Adobe PDF
655.23 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1673554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact