Background: Many approaches exist to integrate protein-protein interaction data with other sources of information, most notably with gene co-expression data, to obtain information on network dynamics. It is of interest to look at groups of interacting gene products that form a protein complex. We were interested in applying new tools to the characterization of pathogenesis and dynamic events of an Alzheimer's-like neurodegenerative model, the AD11 mice, expressing an anti-NGF monoclonal antibody. The goal was to quantify the impact of neurodegeneration on protein complexes, by measuring the correlation between gene expression data by different metrics.Results: Data were extracted from the gene expression profile of AD11 brain, obtained by Agilent microarray, at 1, 3, 6, 15 months of age. For genes coding proteins in complexes, the correlation matrix of pairwise expression was computed. The dynamics between correlation matrices at different time points was evaluated: paired T-test between average correlation levels and a normalized Euclidean distance with z-score. We unveiled a differential wiring of interactions in a set of complexes, whose network structure discriminates between transgenic and control mice. Furthermore, we analyzed the dynamics of gene expression values, by looking at changes in gene-to-gene correlation over time and identified those complexes that exhibit a different timedependent behaviour between transgenic and controls. The most significant changes in correlation dynamics are concentrated in the early stage of disease, with higher correlation in AD11 mice compared to controls. Many complexes go through dynamic changes over time, showing the role of the dysfunctional immunoproteasome, as early neurodegenerative disease event. Furthermore, this analysis shows key events in the neurodegeneration process of the AD11 model, by identifying significant differences in co-expression values of other complexes, such as parvulin complex, with a role in protein misfolding and proteostasis, and of complexes involved in transcriptional mechanisms.Conclusions: We have proposed a novel approach to analyze the network structure of protein complexes, by two different measures to evaluate the dynamics of gene-gene correlation matrices from gene expression profiles. The methodology was able to investigate the re-organization of interactions within protein complexes in the AD11 model of neurodegeneration.

Time dynamics of protein complexes in the AD11 transgenic mouse model for Alzheimer's disease like pathology / Arisi, Ivan; D'Onofrio, Mara; Brandi, Rossella; Cattaneo, Antonino; Bertolazzi, Paola; Cumbo, Fabio; Felici, Giovanni; Guerra, Concettina. - In: BMC NEUROSCIENCE. - ISSN 1471-2202. - 16:1(2015), p. 28. [10.1186/s12868-015-0155-5]

Time dynamics of protein complexes in the AD11 transgenic mouse model for Alzheimer's disease like pathology

D'Onofrio, Mara;Brandi, Rossella;Cattaneo, Antonino;Felici, Giovanni;Guerra, Concettina
2015

Abstract

Background: Many approaches exist to integrate protein-protein interaction data with other sources of information, most notably with gene co-expression data, to obtain information on network dynamics. It is of interest to look at groups of interacting gene products that form a protein complex. We were interested in applying new tools to the characterization of pathogenesis and dynamic events of an Alzheimer's-like neurodegenerative model, the AD11 mice, expressing an anti-NGF monoclonal antibody. The goal was to quantify the impact of neurodegeneration on protein complexes, by measuring the correlation between gene expression data by different metrics.Results: Data were extracted from the gene expression profile of AD11 brain, obtained by Agilent microarray, at 1, 3, 6, 15 months of age. For genes coding proteins in complexes, the correlation matrix of pairwise expression was computed. The dynamics between correlation matrices at different time points was evaluated: paired T-test between average correlation levels and a normalized Euclidean distance with z-score. We unveiled a differential wiring of interactions in a set of complexes, whose network structure discriminates between transgenic and control mice. Furthermore, we analyzed the dynamics of gene expression values, by looking at changes in gene-to-gene correlation over time and identified those complexes that exhibit a different timedependent behaviour between transgenic and controls. The most significant changes in correlation dynamics are concentrated in the early stage of disease, with higher correlation in AD11 mice compared to controls. Many complexes go through dynamic changes over time, showing the role of the dysfunctional immunoproteasome, as early neurodegenerative disease event. Furthermore, this analysis shows key events in the neurodegeneration process of the AD11 model, by identifying significant differences in co-expression values of other complexes, such as parvulin complex, with a role in protein misfolding and proteostasis, and of complexes involved in transcriptional mechanisms.Conclusions: We have proposed a novel approach to analyze the network structure of protein complexes, by two different measures to evaluate the dynamics of gene-gene correlation matrices from gene expression profiles. The methodology was able to investigate the re-organization of interactions within protein complexes in the AD11 model of neurodegeneration.
2015
Alzheimers disease; NGF; Neurodegeneration; Protein-protein interaction; Correlation; Network; Protein complex; AD11 mouse model
01 Pubblicazione su rivista::01a Articolo in rivista
Time dynamics of protein complexes in the AD11 transgenic mouse model for Alzheimer's disease like pathology / Arisi, Ivan; D'Onofrio, Mara; Brandi, Rossella; Cattaneo, Antonino; Bertolazzi, Paola; Cumbo, Fabio; Felici, Giovanni; Guerra, Concettina. - In: BMC NEUROSCIENCE. - ISSN 1471-2202. - 16:1(2015), p. 28. [10.1186/s12868-015-0155-5]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1673174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact