The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome.
CSB ablation induced apoptosis is mediated by increased endoplasmic reticulum stress response / Caputo, Manuela; Balzerano, Alessio; Arisi, Ivan; D'Onofrio, Mara; Brandi, Rossella; Bongiorni, Silvia; Brancorsini, Stefano; Frontini, Mattia; Proietti-De-Santis, Luca. - In: PLOS ONE. - ISSN 1932-6203. - 12:3(2017), p. e0172399. [10.1371/journal.pone.0172399]
CSB ablation induced apoptosis is mediated by increased endoplasmic reticulum stress response
Balzerano, Alessio;D'Onofrio, Mara;Brandi, Rossella;
2017
Abstract
The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.