We consider interacting particle dynamics with Vicsek-type interactions, and their macroscopic Partial Differential Equation (PDE) limit, in the non-mean-field regime; that is, we consider the case in which each particle/agent in the system interacts only with a prescribed subset of the particles in the system (for example, those within a certain distance). In this non-mean-field regime the influence between agents (i.e. the interaction term) can be normalized either by the total number of agents in the system (global scaling) or by the number of agents with which the particle is effectively interacting (local scaling). We compare the behavior of the globally scaled and the locally scaled systems in many respects, considering for each scaling both the PDE and the corresponding particle model. In particular, we observe that both the locally and globally scaled particle system exhibit pattern formation (i.e. formation of traveling-wave-like solutions) within certain parameter regimes, and generally display similar dynamics. The same is not true of the corresponding PDE models. Indeed, while both PDE models have multiple stationary states, for the globally scaled PDE such (space-homogeneous) equilibria are unstable for certain parameter regimes, with the instability leading to traveling wave solutions, while they are always stable for the locally scaled one, which never produces traveling waves. This observation is based on a careful numerical study of the model, supported by further analysis.
Non-mean-field Vicsek-type models for collective behavior / Butta', P.; Goddard, B.; Hodgson, T. M.; Ottobre, M.; Painter, K. J.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 32:14(2022), pp. 2763-2816. [10.1142/S0218202522500646]
Non-mean-field Vicsek-type models for collective behavior
BUTTA' P.;
2022
Abstract
We consider interacting particle dynamics with Vicsek-type interactions, and their macroscopic Partial Differential Equation (PDE) limit, in the non-mean-field regime; that is, we consider the case in which each particle/agent in the system interacts only with a prescribed subset of the particles in the system (for example, those within a certain distance). In this non-mean-field regime the influence between agents (i.e. the interaction term) can be normalized either by the total number of agents in the system (global scaling) or by the number of agents with which the particle is effectively interacting (local scaling). We compare the behavior of the globally scaled and the locally scaled systems in many respects, considering for each scaling both the PDE and the corresponding particle model. In particular, we observe that both the locally and globally scaled particle system exhibit pattern formation (i.e. formation of traveling-wave-like solutions) within certain parameter regimes, and generally display similar dynamics. The same is not true of the corresponding PDE models. Indeed, while both PDE models have multiple stationary states, for the globally scaled PDE such (space-homogeneous) equilibria are unstable for certain parameter regimes, with the instability leading to traveling wave solutions, while they are always stable for the locally scaled one, which never produces traveling waves. This observation is based on a careful numerical study of the model, supported by further analysis.File | Dimensione | Formato | |
---|---|---|---|
Buttà_Non-mean-field_2022.pdf
solo gestori archivio
Note: File PDF della versione editoriale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Contatta l'autore |
Buttà_preprint_Non-mean-field_2022.pdf.pdf
accesso aperto
Note: File PDF del pre-print degli autori
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
10.63 MB
Formato
Adobe PDF
|
10.63 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.