Modern farming causes a decline in the recycling of the soil's inorganic matter due to losses by leaching, runoff, or infiltration into the groundwater. The Soil System Budget approach was applied to evaluate the net N budget at the catchment and sub-catchment levels of the Tiber River (central Italy) in order to establish the causes for different N budgets among the sub-catchments. Statistical Entropy Analysis (SEA) was used to evaluate the N efficiency of the Tiber River and its sub-catchments, providing information on the dispersion of different N forms in the environment. The total N inputs exceeded the total outputs, showing a low N retention (15.8%) at the catchment level, although some sub-catchments showed higher N retention values. The Utilized Agricultural Area was important in the determination of the N balance, as it was linked to zoo- and agricultural activities, although the Random Forest analysis showed that the importance ranking changed with the land use. The low N retention of the Tiber catchment was due to the soil characteristics (Cambisols and Leptosols), loads from atmospheric deposition, biological fixation, and the livestock industry. The SEA simulations showed a reduction of the N released into the atmosphere and groundwater compartments from 34% to 6% through a reduction of the N loads by 50%.

Nitrogen budget and statistical entropy analysis of the Tiber River catchment, a highly anthropized environment / De Marco, Alessandra; Fornasier, Maria Francesca; Screpanti, Augusto; Lombardi, Danilo; Vitale, Marcello. - In: SOIL SYSTEMS. - ISSN 2571-8789. - 6:1(2022). [10.3390/soilsystems6010017]

Nitrogen budget and statistical entropy analysis of the Tiber River catchment, a highly anthropized environment

Lombardi, Danilo;Vitale, Marcello
2022

Abstract

Modern farming causes a decline in the recycling of the soil's inorganic matter due to losses by leaching, runoff, or infiltration into the groundwater. The Soil System Budget approach was applied to evaluate the net N budget at the catchment and sub-catchment levels of the Tiber River (central Italy) in order to establish the causes for different N budgets among the sub-catchments. Statistical Entropy Analysis (SEA) was used to evaluate the N efficiency of the Tiber River and its sub-catchments, providing information on the dispersion of different N forms in the environment. The total N inputs exceeded the total outputs, showing a low N retention (15.8%) at the catchment level, although some sub-catchments showed higher N retention values. The Utilized Agricultural Area was important in the determination of the N balance, as it was linked to zoo- and agricultural activities, although the Random Forest analysis showed that the importance ranking changed with the land use. The low N retention of the Tiber catchment was due to the soil characteristics (Cambisols and Leptosols), loads from atmospheric deposition, biological fixation, and the livestock industry. The SEA simulations showed a reduction of the N released into the atmosphere and groundwater compartments from 34% to 6% through a reduction of the N loads by 50%.
2022
agroecosystems; land use; nitrogen uptake efficiency; soil typologies; statistical entropy analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Nitrogen budget and statistical entropy analysis of the Tiber River catchment, a highly anthropized environment / De Marco, Alessandra; Fornasier, Maria Francesca; Screpanti, Augusto; Lombardi, Danilo; Vitale, Marcello. - In: SOIL SYSTEMS. - ISSN 2571-8789. - 6:1(2022). [10.3390/soilsystems6010017]
File allegati a questo prodotto
File Dimensione Formato  
DeMarco_Nitrogen-budget_2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1672771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact