Using a mirror adequately oriented, the motion of just one hand induces the illusion of the movement with the other hand. Here, we tested the hypothesis that such a mirror phenomenon may be underpinned by an electroencephalographic (EEG) event-related desynchronization/synchronization (ERD/ERS) of central alpha rhythms (around 10 Hz) as a neurophysiological measure of the interactions among cerebral cortex, basal ganglia, and thalamus during movement preparation and execution. Eighteen healthy right-handed male participants performed standard auditory-triggered unilateral (right) or bilateral finger movements in the No Mirror (M-) conditions. In the Mirror (M+) condition, the unilateral right finger movements were performed in front of a mirror oriented to induce the illusion of simultaneous left finger movements. EEG activity was recorded from 64 scalp electrodes, and the artifact-free event-related EEG epochs were used to compute alpha ERD. In the M- conditions, a bilateral prominent central alpha ERD was observed during the bilateral movements, while left central alpha ERD and right alpha ERS were seen during unilateral right movements. In contrast, the M+ condition showed significant bilateral and widespread alpha ERD during the unilateral right movements. These results suggest that the above illusion of the left movements may be related to alpha ERD measures reflecting excitatory desynchronizing signals in right lateral premotor and primary somatomotor areas possibly in relation to basal ganglia-thalamic loops.
Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms / Rizzo, Marco; Petrini, Laura; Del Percio, Claudio; Lopez, Susanna; Arendt-Nielsen, Lars; Babiloni, Claudio. - In: PSYCHOPHYSIOLOGY. - ISSN 0048-5772. - 59:12(2022). [10.1111/psyp.14116]
Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms
Del Percio, Claudio;Lopez, Susanna;Babiloni, Claudio
2022
Abstract
Using a mirror adequately oriented, the motion of just one hand induces the illusion of the movement with the other hand. Here, we tested the hypothesis that such a mirror phenomenon may be underpinned by an electroencephalographic (EEG) event-related desynchronization/synchronization (ERD/ERS) of central alpha rhythms (around 10 Hz) as a neurophysiological measure of the interactions among cerebral cortex, basal ganglia, and thalamus during movement preparation and execution. Eighteen healthy right-handed male participants performed standard auditory-triggered unilateral (right) or bilateral finger movements in the No Mirror (M-) conditions. In the Mirror (M+) condition, the unilateral right finger movements were performed in front of a mirror oriented to induce the illusion of simultaneous left finger movements. EEG activity was recorded from 64 scalp electrodes, and the artifact-free event-related EEG epochs were used to compute alpha ERD. In the M- conditions, a bilateral prominent central alpha ERD was observed during the bilateral movements, while left central alpha ERD and right alpha ERS were seen during unilateral right movements. In contrast, the M+ condition showed significant bilateral and widespread alpha ERD during the unilateral right movements. These results suggest that the above illusion of the left movements may be related to alpha ERD measures reflecting excitatory desynchronizing signals in right lateral premotor and primary somatomotor areas possibly in relation to basal ganglia-thalamic loops.File | Dimensione | Formato | |
---|---|---|---|
Psychophysiology - 2022 - Rizzo - Mirror visual feedback during unilateral finger movements is related to the.pdf
accesso aperto
Note: Rizzo_Mirror visual feedback_2022
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.66 MB
Formato
Adobe PDF
|
3.66 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.