Hopfield model is one of the few neural networks for which analytical results can be obtained. However, most of them are derived under the assumption of random uncorrelated patterns, while in real life applications data to be stored show non-trivial correlations. In the present paper we study how the retrieval capability of the Hopfield network at null temperature is affected by spatial correlations in the data we feed to it. In particular, we use as patterns to be stored the configurations of a linear Ising model at inverse temperature β thus limiting our analysis to exponentially decaying spatial correlations. Exploiting the signal to noise technique we obtain a phase diagram in the load of the Hopfield network and the Ising temperature where a fuzzy phase and a retrieval region can be observed. Remarkably, as the spatial correlation inside patterns is increased, the critical load of the Hopfield network diminishes, a result also confirmed by numerical simulations. The analysis is then generalized to Dense Associative Memories with arbitrary odd-body interactions, for which we obtain analogous results.

Effect of spatial correlations on Hopfield Neural Network and Dense Associative Memories / DE MARZO, Giordano; Iannelli, Giulio. - In: PHYSICA. A. - ISSN 0378-4371. - (2023). [10.1016/j.physa.2023.128487]

Effect of spatial correlations on Hopfield Neural Network and Dense Associative Memories

Giordano De Marzo
;
Giulio Iannelli
2023

Abstract

Hopfield model is one of the few neural networks for which analytical results can be obtained. However, most of them are derived under the assumption of random uncorrelated patterns, while in real life applications data to be stored show non-trivial correlations. In the present paper we study how the retrieval capability of the Hopfield network at null temperature is affected by spatial correlations in the data we feed to it. In particular, we use as patterns to be stored the configurations of a linear Ising model at inverse temperature β thus limiting our analysis to exponentially decaying spatial correlations. Exploiting the signal to noise technique we obtain a phase diagram in the load of the Hopfield network and the Ising temperature where a fuzzy phase and a retrieval region can be observed. Remarkably, as the spatial correlation inside patterns is increased, the critical load of the Hopfield network diminishes, a result also confirmed by numerical simulations. The analysis is then generalized to Dense Associative Memories with arbitrary odd-body interactions, for which we obtain analogous results.
2023
hopfield model; neural networks
01 Pubblicazione su rivista::01a Articolo in rivista
Effect of spatial correlations on Hopfield Neural Network and Dense Associative Memories / DE MARZO, Giordano; Iannelli, Giulio. - In: PHYSICA. A. - ISSN 0378-4371. - (2023). [10.1016/j.physa.2023.128487]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1672551
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact