One of the main interests in time series analysis is the detection of the so called change-points, defined as timestamps where the model parameters expe- rience a substantial shift in value. Once a candidate change-point is identified, we may want to test whether there is a significant difference in distribution before and after the structural break. In this work we approach the problem from a split-sample perspective and we implement and test on both simulated and real data a two-sample test for time dependent streams that we call universal change-point testing.

Universal change point testing for dependent data / Spoto, Federica; Caponera, Alessia; Brutti, Pierpaolo. - (2022). (Intervento presentato al convegno The 51st Scientific Meeting of the Italian Statistical Society, SIS 2022 tenutosi a Caserta: Italy).

Universal change point testing for dependent data

Federica Spoto
;
Alessia Caponera;Pierpaolo Brutti
2022

Abstract

One of the main interests in time series analysis is the detection of the so called change-points, defined as timestamps where the model parameters expe- rience a substantial shift in value. Once a candidate change-point is identified, we may want to test whether there is a significant difference in distribution before and after the structural break. In this work we approach the problem from a split-sample perspective and we implement and test on both simulated and real data a two-sample test for time dependent streams that we call universal change-point testing.
2022
The 51st Scientific Meeting of the Italian Statistical Society, SIS 2022
Universal Inference, Change-point detection, Likelihood ratio test, Time series model
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Universal change point testing for dependent data / Spoto, Federica; Caponera, Alessia; Brutti, Pierpaolo. - (2022). (Intervento presentato al convegno The 51st Scientific Meeting of the Italian Statistical Society, SIS 2022 tenutosi a Caserta: Italy).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1672241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact