Arsenic (As), the silent poison, is a widespread environmental pollutant which finds its way into drinking water supplies from natural or man-made sources and affects over 200 million people worldwide, including in Pakistan. It has been demonstrated that As causes serious health complications as well as social and economic losses. A quick, cost-effective, and simple method for efficiently filtering As from drinking water is urgently needed. The present study evaluates the ability of chemical treatment solutions to activate the sorption capacity of biochar derived from cotton stalks. The surface characteristics of CSB (cotton stalk biochar), HN-CSB (treated with nitric acid: HNO3), and Na-CSB (treated with sodium hydroxide: NaOH) were investigated for their As sorption capacities and efficiency in removing As from contaminated drinking water. The chemical modification of biochar significantly increased the surface area and pore volume of CSB, with a maximum observed in HN-CSB (three times higher than CSB). Fourier-transform infrared spectroscopy (FTIR) analysis revealed several functional groups (OH−, −COOH, C=O, N-H) on CSB, though the chemical modification of biochar creates new functional groups on its surface. Results showed that the maximum sorption capacity of CSB was (q = 90 µg g−1), of Na-CSB was (q = 124 µg g−1) and of HN-CSB was (q = 140 µg g−1) at an initial As concentration of 200 µg L−1, an adsorbent dose of 1 g L−1, with 4 h of contact time, a pH of 6 and a temperature of 25 ʰC. However, As removal was found to be 45–88% for CSB, 62–94% for Na-CSB and 67–95% for HN-CSB across all As concentrations. An isotherm model showed that As sorption results were best fitted to the Langmuir isotherm model in the case of CSB (Qmax = 103 µg g−1, R2 = 0.993), Na-CSB (Qmax = 151 µg g−1, R2 = 0.991), and HN-CSB (Qmax = 157 µg g−1, R2 = 0.949). The development of the largest surface area, a porous structure, and new functional groups on the surface of HN-CSB proved to be an effective treatment for As removal from contaminated drinking water. Both HN-CSB and Na-CSB are clearly cost-effective adsorbents under laboratory conditions, but HN-CSB is cheaper and more efficient in As removal than Na-CSB, allowing it to be used as a powerful and promising adsorbent for the removal of pollutants like Arsenic from aqueous solution.

Activated Biochar Is an Effective Technique for Arsenic Removal from Contaminated Drinking Water in Pakistan / Ahmad, Iftikhar; Ghaffar, Abdul; Zakir, Ali; Ul Haq Khan, Zia; Farhan Saeed, Muhammad; Rasool, Atta; Jamal, Aftab; Mihoub, Adil; Marzeddu, Simone; Boni, Maria Rosaria. - In: SUSTAINABILITY. - ISSN 2071-1050. - 14:21(2022), pp. 1-20. [10.3390/su142114523]

Activated Biochar Is an Effective Technique for Arsenic Removal from Contaminated Drinking Water in Pakistan

Simone Marzeddu
Penultimo
;
Maria Rosaria Boni
Ultimo
2022

Abstract

Arsenic (As), the silent poison, is a widespread environmental pollutant which finds its way into drinking water supplies from natural or man-made sources and affects over 200 million people worldwide, including in Pakistan. It has been demonstrated that As causes serious health complications as well as social and economic losses. A quick, cost-effective, and simple method for efficiently filtering As from drinking water is urgently needed. The present study evaluates the ability of chemical treatment solutions to activate the sorption capacity of biochar derived from cotton stalks. The surface characteristics of CSB (cotton stalk biochar), HN-CSB (treated with nitric acid: HNO3), and Na-CSB (treated with sodium hydroxide: NaOH) were investigated for their As sorption capacities and efficiency in removing As from contaminated drinking water. The chemical modification of biochar significantly increased the surface area and pore volume of CSB, with a maximum observed in HN-CSB (three times higher than CSB). Fourier-transform infrared spectroscopy (FTIR) analysis revealed several functional groups (OH−, −COOH, C=O, N-H) on CSB, though the chemical modification of biochar creates new functional groups on its surface. Results showed that the maximum sorption capacity of CSB was (q = 90 µg g−1), of Na-CSB was (q = 124 µg g−1) and of HN-CSB was (q = 140 µg g−1) at an initial As concentration of 200 µg L−1, an adsorbent dose of 1 g L−1, with 4 h of contact time, a pH of 6 and a temperature of 25 ʰC. However, As removal was found to be 45–88% for CSB, 62–94% for Na-CSB and 67–95% for HN-CSB across all As concentrations. An isotherm model showed that As sorption results were best fitted to the Langmuir isotherm model in the case of CSB (Qmax = 103 µg g−1, R2 = 0.993), Na-CSB (Qmax = 151 µg g−1, R2 = 0.991), and HN-CSB (Qmax = 157 µg g−1, R2 = 0.949). The development of the largest surface area, a porous structure, and new functional groups on the surface of HN-CSB proved to be an effective treatment for As removal from contaminated drinking water. Both HN-CSB and Na-CSB are clearly cost-effective adsorbents under laboratory conditions, but HN-CSB is cheaper and more efficient in As removal than Na-CSB, allowing it to be used as a powerful and promising adsorbent for the removal of pollutants like Arsenic from aqueous solution.
2022
biochar; drinking water; human welfare; modification; remediation; Punjab (Vehari)
01 Pubblicazione su rivista::01a Articolo in rivista
Activated Biochar Is an Effective Technique for Arsenic Removal from Contaminated Drinking Water in Pakistan / Ahmad, Iftikhar; Ghaffar, Abdul; Zakir, Ali; Ul Haq Khan, Zia; Farhan Saeed, Muhammad; Rasool, Atta; Jamal, Aftab; Mihoub, Adil; Marzeddu, Simone; Boni, Maria Rosaria. - In: SUSTAINABILITY. - ISSN 2071-1050. - 14:21(2022), pp. 1-20. [10.3390/su142114523]
File allegati a questo prodotto
File Dimensione Formato  
Ahmad_Activated-biochar-is_2022.pdf

accesso aperto

Note: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1671186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact