Using a unique cross-country sample from 10 impact evaluations of development projects, we test the out-of-sample performance of machine learning algorithms in predicting non-resilient households, where resilience is a subjective metrics defined as the perceived ability to recover from shocks. We report preliminary evidence of the potential of these data-driven techniques to identify the main predictors of household resilience and inform the targeting of resilience-oriented policy interventions.

Predicting household resilience with machine learning: preliminary cross-country tests / Garbero, Alessandra; Letta, Marco. - In: EMPIRICAL ECONOMICS. - ISSN 0377-7332. - 63:4(2022), pp. 2057-2070. [10.1007/s00181-022-02199-4]

Predicting household resilience with machine learning: preliminary cross-country tests

Garbero, Alessandra;Letta, Marco
2022

Abstract

Using a unique cross-country sample from 10 impact evaluations of development projects, we test the out-of-sample performance of machine learning algorithms in predicting non-resilient households, where resilience is a subjective metrics defined as the perceived ability to recover from shocks. We report preliminary evidence of the potential of these data-driven techniques to identify the main predictors of household resilience and inform the targeting of resilience-oriented policy interventions.
2022
Resilience; Machine learning; Classification; Targeting; Predictive analytics
01 Pubblicazione su rivista::01a Articolo in rivista
Predicting household resilience with machine learning: preliminary cross-country tests / Garbero, Alessandra; Letta, Marco. - In: EMPIRICAL ECONOMICS. - ISSN 0377-7332. - 63:4(2022), pp. 2057-2070. [10.1007/s00181-022-02199-4]
File allegati a questo prodotto
File Dimensione Formato  
EE 2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 305.99 kB
Formato Adobe PDF
305.99 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact